Unknown

Dataset Information

0

Implication of molecular vascular smooth muscle cell heterogeneity among arterial beds in arterial calcification.


ABSTRACT: Vascular calcification is a strong and independent predictive factor for cardiovascular complications and mortality. Our previous work identified important discrepancies in plaque composition and calcification types between carotid and femoral arteries. The objective of this study is to further characterize and understand the heterogeneity in vascular calcification among vascular beds, and to identify molecular mechanisms underlying this process. We established ECLAGEN biocollection that encompasses human atherosclerotic lesions and healthy arteries from different locations (abdominal, thoracic aorta, carotid, femoral, and infrapopliteal arteries) for histological, cell isolation, and transcriptomic analysis. Our results show that lesion composition differs between these locations. Femoral arteries are the most calcified arteries overall. They develop denser calcifications (sheet-like, nodule), and are highly susceptible to osteoid metaplasia. These discrepancies may derive from intrinsic differences between SMCs originating from these locations, as microarray analysis showed specific transcriptomic profiles between primary SMCs isolated from each arterial bed. These molecular differences translated into functional disparities. SMC from femoral arteries showed the highest propensity to mineralize due to an increase in basal TGF? signaling. Our results suggest that biological heterogeneity of resident vascular cells between arterial beds, reflected by our transcriptomic analysis, is critical in understanding plaque biology and calcification, and may have strong implications in vascular therapeutic approaches.

SUBMITTER: Espitia O 

PROVIDER: S-EPMC5786328 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

Similar Datasets

2018-01-31 | GSE84012 | GEO
| S-EPMC6512096 | biostudies-literature
| S-EPMC3678289 | biostudies-literature
| S-EPMC3562655 | biostudies-literature
| S-EPMC6129122 | biostudies-literature
| S-EPMC6025998 | biostudies-literature
| S-EPMC6642823 | biostudies-literature
| S-EPMC9325771 | biostudies-literature
| S-EPMC6458154 | biostudies-literature
| S-EPMC3129914 | biostudies-literature