Familial Congenital Methemoglobinemia in Pomeranian Dogs Caused by a Missense Variant in the NADH-Cytochrome B5 Reductase Gene.
Ontology highlight
ABSTRACT: In veterinary medicine, congenital methemoglobinemia associated with nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase (b5R) deficiency is rare. It has been reported in several breeds of dogs, but little information is available about its etiology.To analyze the NADH-cytochrome b5 reductase gene, CYB5R3, in a Pomeranian dog family with methemoglobinemia suspected to be caused by congenital b5R deficiency.Three Pomeranian dogs from a family with methemoglobinemia were analyzed. Five healthy beagles and 5 nonrelated Pomeranian dogs without methemoglobinemia were used as controls.Methemoglobin concentration, b5R activity, and reduced glutathione (GSH) concentration were measured, and a turbidity index was used to evaluate Heinz body formation. The CYB5R3 genes of the affected dog and healthy dogs were analyzed by direct sequencing.Methemoglobin concentrations in erythrocytes of the affected dogs were remarkably higher than those of the control dogs. The b5R activity of the affected dogs was notably lower than that of the control dogs. DNA sequencing indicated that this Pomeranian family carried a CYB5R3 gene missense variant (ATC?CTC at codon 194) that resulted in the replacement of isoleucine (Ile) by leucine (Leu).This dog family had familial congenital methemoglobinemia caused by b5R deficiency, which resulted from a nonsynonymous variant in the CYB5R3 gene. This variation (c.580A>C) led to an amino acid substitution (p.Ile194Leu), and Ile194 was located in the proximal region of the NADH-binding motif. Our data suggested that this variant in the canine CYB5R3 gene would affect function of the b5R in erythrocytes.
Journal of veterinary internal medicine 20180122 1
<h4>Background</h4>In veterinary medicine, congenital methemoglobinemia associated with nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase (b5R) deficiency is rare. It has been reported in several breeds of dogs, but little information is available about its etiology.<h4>Objectives</h4>To analyze the NADH-cytochrome b5 reductase gene, CYB5R3, in a Pomeranian dog family with methemoglobinemia suspected to be caused by congenital b5R deficiency.<h4>Animals</h4>Three Pomeranian dogs f ...[more]
Project description:Recessive hereditary methemoglobinemia (RCM) associated with severe neurological abnormalities is a very rare disorder caused by NADH- cytochrome b5 reductase (cb5r) deficiency (Type II). We report a case of 11 month old male child who had severe mental retardation, microcephaly and gross global developmental delay with methemoglobin level of 61.1%. The diagnosis of NADH-CYB5R3 deficiency was made by the demonstration of significantly reduced NADH-CYB5R3 activity in the patient and intermediate enzyme activity in both the parents. Mutation analysis of the CYB5R gene revealed a novel nine nucleotide deletion in exon 6 leading to the elimination of 3 amino acid residues (Lys173, Ser174 and Val 175). To confirm that this mutation was not an artifact, we performed PCR-RFLP analysis using the restriction enzyme Drd I. As the normal sequence has a restriction recognition site for Drd I which was eliminated by the deletion, a single band of 603-bp was seen in the presence of the homozygous mutation. Molecular modeling analysis showed a significant effect of these 3 amino acids deletion on the protein structure and stability leading to a severe clinical presentation. A novel homozygous 9 nucleotide deletion (p.K173-p.V175del3) is shown to be segregated with the disease in this family. Knowing the profile of mutations would allow us to offer prenatal diagnosis in families with severe neurological disorders associated with RCM - Type II.
Project description:ObjectivesNADH cytochrome b5 reductase (b5R) and cytochrome b5 (b5) catalyze the reduction of sulfamethoxazole hydroxylamine (SMX-HA), which can contribute to sulfonamide hypersensitivity, to the parent drug sulfamethoxazole. Variability in hydroxylamine reduction could thus play a role in adverse drug reactions. The aim of this study was to characterize variability in SMX-HA reduction in 111 human livers, and investigate its association with single nucleotide polymorphisms (SNPs) in b5 and b5R cDNA.MethodsLiver microsomes were assayed for SMX-HA reduction activity, and b5 and b5R expression was semiquantified by immunoblotting. The coding regions of the b5 (CYB5A) and b5R (CYB5R3) genes were resequenced.ResultsHepatic SMX-HA reduction displayed a 19-fold range of individual variability (0.06-1.11 nmol/min/mg protein), and a 17-fold range in efficiency (Vmax/Km) among outliers. SMX-HA reduction was positively correlated with b5 and b5R protein content (P<0.0001, r=0.42; P=0.01, r=0.23, respectively), and expression of both proteins correlated with one another (P<0.0001; r=0.74). A novel cSNP in CYB5A (S5A) was associated with very low activity and protein expression. Two novel CYB5R3 SNPs, R59H and R297H, displayed atypical SMX-HA reduction kinetics and decreased SMX-HA reduction efficiency.ConclusionThese studies indicate that although novel cSNPs in CYB5A and CYB5R3 are associated with significantly altered protein expression and/or hydroxylamine reduction activities, these low-frequency cSNPs seem to only minimally impact overall observed phenotypic variability. Work is underway to characterize polymorphisms in other regions of these genes to further account for individual variability in hydroxylamine reduction.
Project description:Heterocyclic and aromatic amine carcinogens are thought to lead to tumor initiation via the formation of DNA adducts, and bioactivation to arylhydroxylamine metabolites is necessary for reactivity with DNA. Carcinogenic arylhydroxylamine metabolites are cleared by a microsomal, NADH-dependent, oxygen-insensitive reduction pathway in humans, which may be a source of interindividual variability in response to aromatic amine carcinogens. The purpose of this study was to characterize the identity of this reduction pathway in human liver. On the basis of our findings with structurally similar arylhydroxylamine metabolites of therapeutic drugs, we hypothesized that the reductive detoxification of arylhydroxylamine carcinogens was catalyzed by NADH cytochrome b5 reductase (b5R) and cytochrome b5 (cyt b5). We found that reduction of the carcinogenic hydroxylamines of the aromatic amine 4-aminobiphenyl (4-ABP; found in cigarette smoke) and the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP; found in grilled meats) was indeed catalyzed by a purified system containing only human b5R and cyt b5. Specific activities were 56-346-fold higher in the purified system as compared to human liver microsomes (HLM), with similar Michaelis-Menten constants (K(m) values) in both systems. The stoichiometry for b5R and cyt b5 that yielded the highest activity in the purified system was also similar to that found in native HLM ( approximately 1:8 to 1:10). Polyclonal antisera to either b5R or cyt b5 significantly inhibited N-hydroxy-4-aminobiphenyl (NHOH-4-ABP) reduction by 95 and 89%, respectively, and immunoreactive cyt b5 protein content in individual HLM was significantly correlated with individual reduction of both NHOH-4-ABP and N-hydroxy-PhIP (NHOH-PhIP). Finally, titration of HLM into the purified b5R/cyt b5 system did not enhance the efficiency of reduction activity. We conclude that b5R and cyt b5 are together solely capable of the reduction of arylhydroxylamine carcinogens, and we further hypothesize that this pathway may be a source of individual variability with respect to cancer susceptibility following 4-ABP or PhIP exposure.
Project description:Cytoglobin is a heme protein evolutionarily related to hemoglobin and myoglobin. Cytoglobin is expressed ubiquitously in mammalian tissues; however, its physiological functions are yet unclear. Phylogenetic analyses indicate that the cytoglobin gene is highly conserved in vertebrate clades, from fish to reptiles, amphibians, birds, and mammals. Most proposed roles for cytoglobin require the maintenance of a pool of reduced cytoglobin (FeII). We have shown previously that the human cytochrome b5/cytochrome b5 reductase system, considered a quintessential hemoglobin/myoglobin reductant, can reduce human and zebrafish cytoglobins ?250-fold faster than human hemoglobin or myoglobin. It was unclear whether this reduction of zebrafish cytoglobins by mammalian proteins indicates a conserved pathway through vertebrate evolution. Here, we report the reduction of zebrafish cytoglobins 1 and 2 by the zebrafish cytochrome b5 reductase and the two zebrafish cytochrome b5 isoforms. In addition, the reducing system also supports reduction of Globin X, a conserved globin in fish and amphibians. Indeed, the zebrafish reducing system can maintain a fully reduced pool for both cytoglobins, and both cytochrome b5 isoforms can support this process. We determined the P50 for oxygen to be 0.5 Torr for cytoglobin 1 and 4.4 Torr for cytoglobin 2 at 25 °C. Thus, even at low oxygen tensions, the reduced cytoglobins may exist in a predominant oxygen-bound form. Under these conditions, the cytochrome b5/cytochrome b5 reductase system can support a conserved role for cytoglobins through evolution, providing electrons for redox signaling reactions such as nitric oxide dioxygenation, nitrite reduction, and phospholipid oxidation.
Project description:Little is known about genetic causes of congenital methemoglobinemia in dogs. Here, we report a CYB5 R3 mutation in a Pomeranian dog with congenital methemoglobinemia. A 6-year-old neutered female Pomeranian dog was investigated for cyanosis noticed during anesthesia for an orthopedic procedure. The history included lifelong mild exercise intolerance and bluish tongue. Methemoglobinemia was diagnosed using co-oximetry. The CYB5 R3 gene was analyzed by comparing the patient's genomic DNA with the reference canine sequence. Mutation functional significance was investigated using snpEff and multispecies protein homology analyses. A homozygous missense single nucleotide CYB5 R3 mutation (ATC ? CTC at codon 194) caused a p.Ile194Leu substitution. The pIle194 residue is highly conserved in other mammals, supporting the likely pathogenicity of the substitution. The mutation described here is identical to that associated with familial methemoglobinemia in a family of Japanese Pomeranian dogs. This observation, together with the homozygous mutation found in our case, indicates that the mutant allele may be widespread within the Pomeranian breed internationally.
Project description:Two non-pedigreed male castrated cats had persistent cyanosis over a 3-year observation period. Clinical cardiopulmonary evaluations did not reveal abnormalities, but the blood remained dark after exposure to air. Erythrocytic methemoglobin concentrations were high (~40% of hemoglobin) and cytochrome b5 reductase (CYB5R) activities in erythrocytes were low (?15% of control). One cat remained intolerant of exertion, and the other cat developed anemia and died due to an unidentified comorbidity. Whole-genome sequencing revealed a homozygous c.625G>A missense variant (B4:137967506) and a c.232-1G>C splice acceptor variant (B4:137970815) in CYB5R3, respectively, which were absent in 193 unaffected additional cats. The p.Gly209Ser missense variant likely disrupts a nicotinamide adenine dinucleotide (NADH)-binding domain, while the splicing error occurs at the acceptor site for exon 4, which likely affects downstream translation of the protein. The 2 novel CYB5R3 variants were associated with methemoglobinemia using clinical, biochemical, genomics, and in silico protein studies. The variant prevalence is unknown in the cat population.
Project description:Membrane cytochrome b5 reductase is a pleiotropic oxidoreductase that uses primarily soluble reduced nicotinamide adenine dinucleotide (NADH) as an electron donor to reduce multiple biological acceptors localized in cellular membranes. Some of the biological acceptors of the reductase and coupled redox proteins might eventually transfer electrons to oxygen to form reactive oxygen species. Additionally, an inefficient electron transfer to redox acceptors can lead to electron uncoupling and superoxide anion formation by the reductase. Many efforts have been made to characterize the involved catalytic domains in the electron transfer from the reduced flavoprotein to its electron acceptors, such as cytochrome b5, through a detailed description of the flavin and NADH-binding sites. This information might help to understand better the processes and modifications involved in reactive oxygen formation by the cytochrome b5 reductase. Nevertheless, more than half a century since this enzyme was first purified, the one-electron transfer process toward potential electron acceptors of the reductase is still only partially understood. New advances in computational analysis of protein structures allow predicting the intramolecular protein dynamics, identifying potential functional sites, or evaluating the effects of microenvironment changes in protein structure and dynamics. We applied this approach to characterize further the roles of amino acid domains within cytochrome b5 reductase structure, part of the catalytic domain, and several sensors and structural domains involved in the interactions with cytochrome b5 and other electron acceptors. The computational analysis results allowed us to rationalize some of the available spectroscopic data regarding ligand-induced conformational changes leading to an increase in the flavin adenine dinucleotide (FAD) solvent-exposed surface, which has been previously correlated with the formation of complexes with electron acceptors.
Project description:The effects of bivalent cations on cytochrome b5 reduction by NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase were studied with the proteinase-solubilized enzymes. Cytochrome b5 reduction by NADH:cytochrome b5 reductase was strongly inhibited by CaCl2 or MgCl2. When 1.2 microM-cytochrome b5 was used, the concentrations of CaCl2 and MgCl2 required for 50% inhibition (I50) were 8 and 18 mM respectively. The inhibition was competitive with respect to cytochrome b5. The extent of inhibition by CaCl2 or MgCl2 was much higher than that by KCl or other alkali halides. In contrast, cytochrome b5 reduction by NADPH:cytochrome c reductase was extremely activated by CaCl2 or MgCl2. In the presence of 5 mM-CaCl2, the activity was 24-fold higher than control when 4.4 microM-cytochrome b5 was used. The magnitude of activation by CaCl2 was 2-3-fold higher than that by MgCl2. The activation by these salts was much higher than that by KCl, indicating that bivalent cations play an important role in this activation. The mechanisms of inhibition and activation by bivalent cations of cytochrome b5 reduction by these two microsomal reductases are discussed.
Project description:Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.