Unknown

Dataset Information

0

Clustered F8 missense mutations cause hemophilia A by combined alteration of splicing and protein biosynthesis and activity.


ABSTRACT: Dissection of pleiotropic effects of missense mutations, rarely investigated in inherited diseases, is fundamental to understanding genotype-phenotype relationships. Missense mutations might impair mRNA processing in addition to protein properties. As a model for hemophilia A, we investigated the highly prevalent F8 c.6046c>t/p.R2016W (exon 19) mutation. In expression studies exploiting lentiviral vectors, we demonstrated that the amino acid change impairs both Factor VIII (FVIII) secretion (antigen 11.0±0.4% of wild-type) and activity (6.0±2.9%). Investigations in patients' ectopic F8 mRNA and with minigenes showed that the corresponding nucleotide change also decreases correct splicing to 70±5%, which is predicted to lower further FVIII activity (4.2±2%), consistently with patients' levels (<1-5%). Masking the mutated exon 19 region by antisense U7snRNA supported the presence of a splicing regulatory element, potentially affected by several missense mutations causing hemophilia A. Among these, the c.6037g>a (p.G2013R) reduced exon inclusion to 41±3% and the c.6053a>g (p.E2018G) to 28±2%, similarly to a variant affecting the 5' splice site (c.6113a>g, p.N2038S, 26±2%), which displayed normal protein features upon recombinant expression. The p.G2013R reduced both antigen (7.0±0.9%) and activity (8.4±0.8%), while the p.E2018G produced a dysfunctional molecule (antigen: 69.0±18.1%; activity: 19.4±2.3%). In conclusion, differentially altered mRNA and protein patterns produce a gradient of residual activity, and clarify genotype-phenotype relationships. Data detail pathogenic mechanisms that, only in combination, account for moderate/severe disease forms, which in turn determine the mutation profile. Taken together we provide a clear example of interplay between mRNA and protein mechanisms of disease that operate in shaping many other inherited disorders.

SUBMITTER: Donadon I 

PROVIDER: S-EPMC5792279 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Clustered <i>F8</i> missense mutations cause hemophilia A by combined alteration of splicing and protein biosynthesis and activity.

Donadon Irving I   McVey John H JH   Garagiola Isabella I   Branchini Alessio A   Mortarino Mimosa M   Peyvandi Flora F   Bernardi Francesco F   Pinotti Mirko M  

Haematologica 20171123 2


Dissection of pleiotropic effects of missense mutations, rarely investigated in inherited diseases, is fundamental to understanding genotype-phenotype relationships. Missense mutations might impair mRNA processing in addition to protein properties. As a model for hemophilia A, we investigated the highly prevalent <i>F8</i> c.6046c>t/p.R2016W (exon 19) mutation. In expression studies exploiting lentiviral vectors, we demonstrated that the amino acid change impairs both Factor VIII (FVIII) secreti  ...[more]

Similar Datasets

| S-EPMC9947239 | biostudies-literature
| S-SCDT-EMM-2021-15199 | biostudies-other
| S-EPMC2275016 | biostudies-literature
| S-EPMC7236410 | biostudies-literature
| S-EPMC6599346 | biostudies-literature
| S-EPMC8265364 | biostudies-literature
| S-EPMC3032064 | biostudies-literature
| S-EPMC5737171 | biostudies-literature
| S-EPMC5965921 | biostudies-literature
| S-EPMC5985402 | biostudies-literature