Unknown

Dataset Information

0

Functional implications of corticosteroid-binding globulin N-glycosylation.


ABSTRACT: Corticosteroid-binding globulin (CBG) is a plasma carrier of glucocorticoids. Human and rat CBGs have six N-glycosylation sites. Glycosylation of human CBG influences its steroid-binding activity, and there are N-glycosylation sites in the reactive center loops (RCLs) of human and rat CBGs. Proteolysis of the RCL of human CBG causes a structural change that disrupts steroid binding. We now show that mutations of conserved N-glycosylation sites at N238 in human CBG and N230 in rat CBG disrupt steroid binding. Inhibiting glycosylation by tunicamycin also markedly reduced human and rat CBG steroid-binding activities. Deglycosylation of fully glycosylated human CBG or human CBG with only one N-glycan at N238 with Endo H-reduced steroid-binding affinity, while PNGase F-mediated deglycosylation does not, indicating that steroid binding is preserved by deamidation of N238 when its N-glycan is removed. When expressed in N-acetylglucosaminyltransferase-I-deficient Lec1 cells, human and rat CBGs, and a human CBG mutant with only one glycosylation site at N238, have higher (2-4 fold) steroid-binding affinities than when produced by sialylation-deficient Lec2 cells or glycosylation-competent CHO-S cells. Thus, the presence and composition of an N-glycan in this conserved position both appear to influence the steroid binding of CBG. We also demonstrate that neutrophil elastase cleaves the RCL of human CBG and reduces its steroid-binding capacity more efficiently than does chymotrypsin or the Pseudomonas aeruginosa protease LasB. Moreover, while glycosylation of N347 in the RCL limits these activities, N-glycans at other sites also appear to protect CBG from neutrophil elastase or chymotrypsin.

SUBMITTER: Simard M 

PROVIDER: S-EPMC5793714 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional implications of corticosteroid-binding globulin <i>N</i>-glycosylation.

Simard Marc M   Underhill Caroline C   Hammond Geoffrey L GL  

Journal of molecular endocrinology 20171222 2


Corticosteroid-binding globulin (CBG) is a plasma carrier of glucocorticoids. Human and rat CBGs have six <i>N</i>-glycosylation sites. Glycosylation of human CBG influences its steroid-binding activity, and there are <i>N</i>-glycosylation sites in the reactive center loops (RCLs) of human and rat CBGs. Proteolysis of the RCL of human CBG causes a structural change that disrupts steroid binding. We now show that mutations of conserved <i>N</i>-glycosylation sites at N238 in human CBG and N230 i  ...[more]

Similar Datasets

| S-EPMC6686952 | biostudies-literature
| S-EPMC3530532 | biostudies-literature
| S-EPMC6945416 | biostudies-literature
2023-11-03 | GSE245348 | GEO
| S-EPMC10784704 | biostudies-literature
| S-EPMC9231005 | biostudies-literature
| S-EPMC3149095 | biostudies-literature
| S-EPMC5016167 | biostudies-literature
| S-EPMC8634628 | biostudies-literature
| S-EPMC6347282 | biostudies-literature