Unknown

Dataset Information

0

Elucidating mechanisms of sunitinib resistance in renal cancer: an integrated pathological-molecular analysis.


ABSTRACT: Upon sunitinib treatment of metastatic renal cell carcinoma patients eventually acquire resistance. Our aim was to investigate microRNAs behind sunitinib resistance. We developed an in vivo xenograft and an in vitro model and compared morphological, immunhistochemical, transcriptomical and miRNome data changes during sunitinib response and resistance by performing next-generation mRNA and miRNA sequencing. Complex bioinformatics (pathway, BioFunction and network) analysis were performed. Results were validated by in vitro functional assays. Our morphological, immunhistochemical, transcriptomical and miRNome data all pointed out that during sunitinib resistance tumor cells changed to migratory phenotype. We identified the downregulated miR-1 and miR-663a targeting FRAS1 (Fraser Extracellular Matrix Complex Subunit 1) and MDGA1 (MAM Domain Containing Glycosylphosphatidylinositol Anchor 1) in resistant tumors. We proved firstly miR-1-FRAS1 and miR-663a-MDGA1 interactions. We found that MDGA1 knockdown decreased renal cancer cell migration and proliferation similarly to restoration of levels of miR-1 and miR-663. Our results support the central role of cell migration as an adaptive mechanism to secure tumor survival behind sunitinib resistance. MDGA1, FRAS1 or the targeting miRNAs can be potential adjuvant therapeutic targets, through inhibition of cancer cell migration, thus eliminating the development of resistance and metastasis.

SUBMITTER: Butz H 

PROVIDER: S-EPMC5797004 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Elucidating mechanisms of sunitinib resistance in renal cancer: an integrated pathological-molecular analysis.

Butz Henriett H   Ding Qiang Q   Nofech-Mozes Roy R   Lichner Zsuzsanna Z   Ni Heyu H   Yousef George M GM  

Oncotarget 20171208 4


Upon sunitinib treatment of metastatic renal cell carcinoma patients eventually acquire resistance. Our aim was to investigate microRNAs behind sunitinib resistance. We developed an <i>in vivo</i> xenograft and an <i>in vitro</i> model and compared morphological, immunhistochemical, transcriptomical and miRNome data changes during sunitinib response and resistance by performing next-generation mRNA and miRNA sequencing. Complex bioinformatics (pathway, BioFunction and network) analysis were perf  ...[more]

Similar Datasets

| S-EPMC7821950 | biostudies-literature
| S-EPMC8430814 | biostudies-literature
| S-EPMC8235637 | biostudies-literature
2021-04-16 | GSE172165 | GEO
2021-09-02 | GSE183140 | GEO
| S-EPMC5345511 | biostudies-literature
| S-EPMC5345522 | biostudies-literature
| S-EPMC7299431 | biostudies-literature
| S-EPMC10641571 | biostudies-literature