Analysis of differential transcript expression in chickpea during compatible and incompatible interactions with Fusarium oxysporum f. sp. ciceris Race 4.
Ontology highlight
ABSTRACT: The present study reports the transcriptome analysis of resistance (WR315) and susceptible (JG62) genotypes of chickpea in response to Fusarium oxysporum f. sp. ciceris (Foc) race 4 using the method of suppression subtractive hybridization. Altogether, 162 chickpea-expressed sequence tags (ESTs) were identified from two libraries and analyzed to catalog eight functional categories. These ESTs could be assembled into 18 contigs and 144 singletons with 10 contigs and 68 singletons from compatible and 8 contigs and 70 singletons from incompatible interaction. The largest category consisted of ESTs which encode for proteins related to hypothetical proteins (22.8%), followed by energy and metabolism (20.3%)-related genes, defense and cell rescue-related genes (17.9%) and signal transduction-related genes (16%). Among them, 17.1 and 18.7% were defense-related genes in compatible and incompatible interaction, respectively. These ESTs mainly includes various putative genes related to oxidative burst, pathogenesis and secondary metabolism. Induction of putative superoxide dismutase, metallothionein, 4-coumarate-CoA ligase, heat shock proteins and cysteine proteases indicated oxidative burst after infection. The ESTs belonged to various functional categories which were directly and indirectly associated with defense signaling pathways. Quantitative and semi-quantitative polymerase chain reaction exhibited differential expression of candidate genes and detected higher levels in incompatible interaction compared to compatible interaction. The present study revealed partial molecular mechanism associated with the resistance in chickpea against Foc, which is the key to design a strategy for incorporation of resistance via either biotechnological means or introgression of resistance genes.
SUBMITTER: Saabale PR
PROVIDER: S-EPMC5797715 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA