Ontology highlight
ABSTRACT: Author summary
This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference-and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models that can entertain both discrete and continuous states. This leads to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to characterize the requisite message passing, and link this formal characterization to canonical microcircuits and extrinsic connectivity in the brain.
SUBMITTER: Friston KJ
PROVIDER: S-EPMC5798592 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
Network neuroscience (Cambridge, Mass.) 20171231 4
This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference-and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models. Crucially, these models can entertain both discrete and continuous states, leading to distinct schemes for belief updating that ...[more]