Unknown

Dataset Information

0

Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions.


ABSTRACT: Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems.

SUBMITTER: Robador A 

PROVIDER: S-EPMC5800293 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions.

Robador Alberto A   LaRowe Douglas E DE   Finkel Steven E SE   Amend Jan P JP   Nealson Kenneth H KH  

Frontiers in microbiology 20180201


Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enu  ...[more]

Similar Datasets

2014-02-21 | E-GEOD-55193 | biostudies-arrayexpress
| S-EPMC2887804 | biostudies-other
| S-EPMC9893671 | biostudies-literature
| S-EPMC4018678 | biostudies-literature
2014-02-21 | GSE55193 | GEO
| S-EPMC9430649 | biostudies-literature
| S-EPMC4424904 | biostudies-literature
| S-EPMC9298331 | biostudies-literature
| S-EPMC7979858 | biostudies-literature
| S-EPMC7007255 | biostudies-literature