Unknown

Dataset Information

0

Protein Mass Effects on Formate Dehydrogenase.


ABSTRACT: Isotopically labeled enzymes (denoted as "heavy" or "Born-Oppenheimer" enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein's higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intrinsic kinetic isotope effects of the enzyme formate dehydrogenase is used to examine the distribution of H-donor to H-acceptor distance as a function of the protein's mass. The protein dynamics are altered in the heavy enzyme to diminish motions that determine the transition state sampling in the native enzyme, in accordance with a Born-Oppenheimer-like effect on bond activation. Findings of this work suggest components related to fast frequencies that can be explained by Born-Oppenheimer enzyme hypothesis (vibrational) and also slower time scale events that are non-Born-Oppenheimer in nature (electrostatic), based on evaluations of protein mass dependence of donor-acceptor distance and forward commitment to catalysis along with steady state and single turnover measurements. Together, the findings suggest that the mass modulation affected both local, fast, protein vibrations associated with the catalyzed chemistry and the protein's macromolecular electrostatics at slower time scales; that is, both Born-Oppenheimer and non-Born-Oppenheimer effects are observed. Comparison to previous studies leads to the conclusion that isotopic labeling of the protein may have different effects on different systems, however, making heavy enzyme studies a very exciting technique for exploring the dynamics link to catalysis in proteins.

SUBMITTER: Ranasinghe C 

PROVIDER: S-EPMC5800309 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein Mass Effects on Formate Dehydrogenase.

Ranasinghe Chethya C   Guo Qi Q   Sapienza Paul J PJ   Lee Andrew L AL   Quinn Daniel M DM   Cheatum Christopher M CM   Kohen Amnon A  

Journal of the American Chemical Society 20171127 48


Isotopically labeled enzymes (denoted as "heavy" or "Born-Oppenheimer" enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein's higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intr  ...[more]

Similar Datasets

| S-EPMC9549741 | biostudies-literature
| S-EPMC8118594 | biostudies-literature
| S-EPMC3347622 | biostudies-literature
| S-EPMC3811350 | biostudies-literature
| S-EPMC3553769 | biostudies-literature
| S-EPMC2206666 | biostudies-literature
| S-EPMC1179669 | biostudies-other
| S-EPMC2533850 | biostudies-literature
| S-EPMC4917879 | biostudies-literature
| S-EPMC8808070 | biostudies-literature