Unknown

Dataset Information

0

Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach.


ABSTRACT: Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20ZR an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20ZR. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.

SUBMITTER: Akberdin IR 

PROVIDER: S-EPMC5802761 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Methane utilization in Methylomicrobium alcaliphilum 20Z<sup>R</sup>: a systems approach.

Akberdin Ilya R IR   Thompson Merlin M   Hamilton Richard R   Desai Nalini N   Alexander Danny D   Henard Calvin A CA   Guarnieri Michael T MT   Kalyuzhnaya Marina G MG  

Scientific reports 20180206 1


Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, <sup>13</sup>  ...[more]

Similar Datasets

| S-EPMC8759281 | biostudies-literature
| S-EPMC6277846 | biostudies-literature
| S-EPMC3256673 | biostudies-literature
| S-EPMC6570963 | biostudies-literature
| S-EPMC5023229 | biostudies-literature
| S-EPMC2805328 | biostudies-literature
| PRJEA73721 | ENA
| PRJNA221338 | ENA
| S-EPMC4285568 | biostudies-literature
| S-EPMC7298851 | biostudies-literature