Unknown

Dataset Information

0

Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials.


ABSTRACT: Despite their widespread use in non-invasive studies of porous materials, conventional MRI methods yield ambiguous results for microscopically heterogeneous materials such as brain tissue. While the forward link between microstructure and MRI observables is well understood, the inverse problem of separating the signal contributions from different microscopic pores is notoriously difficult. Here, we introduce an experimental protocol where heterogeneity is resolved by establishing 6D correlations between the individual values of isotropic diffusivity, diffusion anisotropy, orientation of the diffusion tensor, and relaxation rates of distinct populations. Such procedure renders the acquired signal highly specific to the sample's microstructure, and allows characterization of the underlying pore space without prior assumptions on the number and nature of distinct microscopic environments. The experimental feasibility of the suggested method is demonstrated on a sample designed to mimic the properties of nerve tissue. If matched to the constraints of whole body scanners, this protocol could allow for the unconstrained determination of the different types of tissue that compose the living human brain.

SUBMITTER: de Almeida Martins JP 

PROVIDER: S-EPMC5802831 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials.

de Almeida Martins João P JP   Topgaard Daniel D  

Scientific reports 20180206 1


Despite their widespread use in non-invasive studies of porous materials, conventional MRI methods yield ambiguous results for microscopically heterogeneous materials such as brain tissue. While the forward link between microstructure and MRI observables is well understood, the inverse problem of separating the signal contributions from different microscopic pores is notoriously difficult. Here, we introduce an experimental protocol where heterogeneity is resolved by establishing 6D correlations  ...[more]

Similar Datasets

| S-EPMC5605406 | biostudies-literature
| S-EPMC6311093 | biostudies-literature
| S-EPMC8388088 | biostudies-literature
| S-EPMC4965358 | biostudies-literature
| S-EPMC7058792 | biostudies-literature
| S-EPMC7501241 | biostudies-literature
| S-EPMC7222333 | biostudies-literature
| S-EPMC6176927 | biostudies-literature
| S-EPMC6908649 | biostudies-literature
| S-EPMC6426978 | biostudies-literature