Unknown

Dataset Information

0

Activity-Related Microsecond Dynamics Revealed by Temperature-Jump Forster Resonance Energy Transfer Measurements on Thermophilic Alcohol Dehydrogenase.


ABSTRACT: Previous studies of a thermophilic alcohol dehydrogenase (ht-ADH) demonstrated a range of discontinuous transitions at 30 °C that include catalysis, kinetic isotope effects, protein hydrogen-deuterium exchange rates, and intrinsic fluorescence properties. Using the Förster resonance energy transfer response from a Trp-NADH donor-acceptor pair in T-jump studies of ht-ADH, we now report microsecond protein motions that can be directly related to active site chemistry. Two distinctive transients are observed: a slow, kinetic process lacking a temperature break, together with a faster transient that is only detectable above 30 °C. The latter establishes a link between enzyme activity and microsecond protein motions near the cofactor binding site, in a region distinct from a previously detected protein network that communicates with the substrate binding site. Though evidence of direct dynamical links between microsecond protein motions and active site bond cleavage events is extremely rare, these studies highlight the potential of T-jump measurements to uncover such properties.

SUBMITTER: Vaughn MB 

PROVIDER: S-EPMC5802873 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Activity-Related Microsecond Dynamics Revealed by Temperature-Jump Förster Resonance Energy Transfer Measurements on Thermophilic Alcohol Dehydrogenase.

Vaughn Morgan B MB   Zhang Jianyu J   Spiro Thomas G TG   Dyer R Brian RB   Klinman Judith P JP  

Journal of the American Chemical Society 20180111 3


Previous studies of a thermophilic alcohol dehydrogenase (ht-ADH) demonstrated a range of discontinuous transitions at 30 °C that include catalysis, kinetic isotope effects, protein hydrogen-deuterium exchange rates, and intrinsic fluorescence properties. Using the Förster resonance energy transfer response from a Trp-NADH donor-acceptor pair in T-jump studies of ht-ADH, we now report microsecond protein motions that can be directly related to active site chemistry. Two distinctive transients ar  ...[more]

Similar Datasets

| S-EPMC4970856 | biostudies-literature
| S-EPMC8179397 | biostudies-literature
| S-EPMC4167064 | biostudies-literature
| PRJNA759401 | ENA
| S-EPMC4056859 | biostudies-literature
| S-EPMC374326 | biostudies-literature
| S-EPMC470713 | biostudies-literature
| S-EPMC2706461 | biostudies-literature
| S-EPMC4883009 | biostudies-literature
| S-EPMC2776246 | biostudies-literature