Unknown

Dataset Information

0

Demonstration of universal parametric entangling gates on a multi-qubit lattice.


ABSTRACT: We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ? = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ? = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk.

SUBMITTER: Reagor M 

PROVIDER: S-EPMC5804605 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Demonstration of universal parametric entangling gates on a multi-qubit lattice.

Reagor Matthew M   Osborn Christopher B CB   Tezak Nikolas N   Staley Alexa A   Prawiroatmodjo Guenevere G   Scheer Michael M   Alidoust Nasser N   Sete Eyob A EA   Didier Nicolas N   da Silva Marcus P MP   Acala Ezer E   Angeles Joel J   Bestwick Andrew A   Block Maxwell M   Bloom Benjamin B   Bradley Adam A   Bui Catvu C   Caldwell Shane S   Capelluto Lauren L   Chilcott Rick R   Cordova Jeff J   Crossman Genya G   Curtis Michael M   Deshpande Saniya S   El Bouayadi Tristan T   Girshovich Daniel D   Hong Sabrina S   Hudson Alex A   Karalekas Peter P   Kuang Kat K   Lenihan Michael M   Manenti Riccardo R   Manning Thomas T   Marshall Jayss J   Mohan Yuvraj Y   O'Brien William W   Otterbach Johannes J   Papageorge Alexander A   Paquette Jean-Philip JP   Pelstring Michael M   Polloreno Anthony A   Rawat Vijay V   Ryan Colm A CA   Renzas Russ R   Rubin Nick N   Russel Damon D   Rust Michael M   Scarabelli Diego D   Selvanayagam Michael M   Sinclair Rodney R   Smith Robert R   Suska Mark M   To Ting-Wai TW   Vahidpour Mehrnoosh M   Vodrahalli Nagesh N   Whyland Tyler T   Yadav Kamal K   Zeng William W   Rigetti Chad T CT  

Science advances 20180202 2


We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a fo  ...[more]

Similar Datasets

| S-EPMC4212229 | biostudies-other
| S-EPMC10622571 | biostudies-literature
| S-EPMC3000260 | biostudies-literature
| S-EPMC10567572 | biostudies-literature
| S-EPMC7289877 | biostudies-literature
| S-EPMC5599512 | biostudies-literature
| S-EPMC9013363 | biostudies-literature
| S-EPMC5376194 | biostudies-literature
| S-EPMC6269160 | biostudies-literature
| S-EPMC10796911 | biostudies-literature