Unknown

Dataset Information

0

Collaborative multi organ segmentation by integrating deformable and graphical models.


ABSTRACT: Organ segmentation is a challenging problem on which significant progress has been made. Deformable models (DM) and graphical models (GM) are two important categories of optimization based image segmentation methods. Efforts have been made on integrating two types of models into one framework. However, previous methods are not designed for segmenting multiple organs simultaneously and accurately. In this paper, we propose a hybrid multi organ segmentation approach by integrating DM and GM in a coupled optimization framework. Specifically, we show that region-based deformable models can be integrated with Markov Random Fields (MRF), such that multiple models' evolutions are driven by a maximum a posteriori (MAP) inference. It brings global and local deformation constraints into a unified framework for simultaneous segmentation of multiple objects in an image. We validate this proposed method on two challenging problems of multi organ segmentation, and the results are promising.

SUBMITTER: Uzunbas MG 

PROVIDER: S-EPMC5809157 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Collaborative multi organ segmentation by integrating deformable and graphical models.

Uzunbaş Mustafa Gökhan MG   Chen Chao C   Zhang Shaoting S   Poh Kilian M KM   Li Kang K   Metaxas Dimitris D  

Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 20130101 Pt 2


Organ segmentation is a challenging problem on which significant progress has been made. Deformable models (DM) and graphical models (GM) are two important categories of optimization based image segmentation methods. Efforts have been made on integrating two types of models into one framework. However, previous methods are not designed for segmenting multiple organs simultaneously and accurately. In this paper, we propose a hybrid multi organ segmentation approach by integrating DM and GM in a c  ...[more]

Similar Datasets

| S-EPMC7447922 | biostudies-literature
| S-EPMC6103499 | biostudies-literature
| S-EPMC10439521 | biostudies-literature
| S-EPMC5966025 | biostudies-literature
| S-EPMC9990908 | biostudies-literature
| S-EPMC2374837 | biostudies-literature
| S-EPMC6076994 | biostudies-literature
| S-EPMC7648799 | biostudies-literature
| S-EPMC7166149 | biostudies-literature
| S-EPMC3539759 | biostudies-literature