What #theDress reveals about the role of illumination priors in color perception and color constancy.
Ontology highlight
ABSTRACT: The disagreement between people who named #theDress (the Internet phenomenon of 2015) "blue and black" versus "white and gold" is thought to be caused by individual differences in color constancy. It is hypothesized that observers infer different incident illuminations, relying on illumination "priors" to overcome the ambiguity of the image. Different experiences may drive the formation of different illumination priors, and these may be indicated by differences in chronotype. We assess this hypothesis, asking whether matches to perceived illumination in the image and/or perceived dress colors relate to scores on the morningness-eveningness questionnaire (a measure of chronotype). We find moderate correlations between chronotype and illumination matches (morning types giving bluer illumination matches than evening types) and chronotype and dress body matches, but these are significant only at the 10% level. Further, although inferred illumination chromaticity in the image explains variation in the color matches to the dress (confirming the color constancy hypothesis), color constancy thresholds obtained using an established illumination discrimination task are not related to dress color perception. We also find achromatic settings depend on luminance, suggesting that subjective white point differences may explain the variation in dress color perception only if settings are made at individually tailored luminance levels. The results of such achromatic settings are inconsistent with their assumed correspondence to perceived illumination. Finally, our results suggest that perception and naming are disconnected, with observers reporting different color names for the dress photograph and their isolated color matches, the latter best capturing the variation in the matches.
SUBMITTER: Aston S
PROVIDER: S-EPMC5812438 | biostudies-literature | 2017 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA