Unknown

Dataset Information

0

Compatible Solute Synthesis and Import by the Moderate Halophile Spiribacter salinus: Physiology and Genomics.


ABSTRACT: Members of the genus Spiribacter are found worldwide and are abundant in ecosystems possessing intermediate salinities between seawater and saturated salt concentrations. Spiribacter salinus M19-40 is the type species of this genus and its first cultivated representative. In the habitats of S. salinus M19-40, high salinity is a key determinant for growth and we therefore focused on the cellular adjustment strategy to this persistent environmental challenge. We coupled these experimental studies to the in silico mining of the genome sequence of this moderate halophile with respect to systems allowing this bacterium to control its potassium and sodium pools, and its ability to import and synthesize compatible solutes. S. salinus M19-40 produces enhanced levels of the compatible solute ectoine, both under optimal and growth-challenging salt concentrations, but the genes encoding the corresponding biosynthetic enzymes are not organized in a canonical ectABC operon. Instead, they are scrambled (ectAC; ectB) and are physically separated from each other on the S. salinus M19-40 genome. Genomes of many phylogenetically related bacteria also exhibit a non-canonical organization of the ect genes. S. salinus M19-40 also synthesizes trehalose, but this compatible solute seems to make only a minor contribution to the cytoplasmic solute pool under osmotic stress conditions. However, its cellular levels increase substantially in stationary phase cells grown under optimal salt concentrations. In silico genome mining revealed that S. salinus M19-40 possesses different types of uptake systems for compatible solutes. Among the set of compatible solutes tested in an osmostress protection growth assay, glycine betaine and arsenobetaine were the most effective. Transport studies with radiolabeled glycine betaine showed that S. salinus M19-40 increases the pool size of this osmolyte in a fashion that is sensitively tied to the prevalent salinity of the growth medium. It was amassed in salt-stressed cells in unmodified form and suppressed the synthesis of ectoine. In conclusion, the data presented here allow us to derive a genome-scale picture of the cellular adjustment strategy of a species that represents an environmentally abundant group of ecophysiologically important halophilic microorganisms.

SUBMITTER: Leon MJ 

PROVIDER: S-EPMC5818414 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Compatible Solute Synthesis and Import by the Moderate Halophile <i>Spiribacter salinus</i>: Physiology and Genomics.

León María J MJ   Hoffmann Tamara T   Sánchez-Porro Cristina C   Heider Johann J   Ventosa Antonio A   Bremer Erhard E  

Frontiers in microbiology 20180215


Members of the genus <i>Spiribacter</i> are found worldwide and are abundant in ecosystems possessing intermediate salinities between seawater and saturated salt concentrations. <i>Spiribacter salinus</i> M19-40 is the type species of this genus and its first cultivated representative. In the habitats of <i>S. salinus</i> M19-40, high salinity is a key determinant for growth and we therefore focused on the cellular adjustment strategy to this persistent environmental challenge. We coupled these  ...[more]

Similar Datasets

| PRJNA205082 | ENA
| S-EPMC5923411 | biostudies-literature
| S-EPMC4054224 | biostudies-literature
| PRJNA179191 | ENA
2023-01-08 | GSE222067 | GEO
| S-EPMC126723 | biostudies-literature
| PRJNA329470 | ENA
| S-EPMC9932913 | biostudies-literature
| S-EPMC2519522 | biostudies-literature
| S-EPMC2493186 | biostudies-literature