Unknown

Dataset Information

0

Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations.


ABSTRACT: The majority of Mycobacterium tuberculosis isolates resistant to isoniazid harbour a mutation in katG. Since these mutations cause a wide range of minimum inhibitory concentrations (MICs), largely below the serum level reached with higher dosing (15?mg/L upon 15-20?mg/kg), the drug might still remain partly active in presence of a katG mutation. We therefore investigated which genetic mutations predict the level of phenotypic isoniazid resistance in clinical M. tuberculosis isolates. To this end, the association between known and unknown isoniazid resistance-conferring mutations in whole genome sequences, and the isoniazid MICs of 176 isolates was examined. We found mostly moderate-level resistance characterized by a mode of 6.4?mg/L for the very common katG Ser315Thr mutation, and always very high MICs (?19.2?mg/L) for the combination of katG Ser315Thr and inhA c-15t. Contrary to common belief, isolates harbouring inhA c-15t alone, partly also showed moderate-level resistance, particularly when combined with inhA Ser94Ala. No overt association between low-confidence or unknown mutations, except in katG, and isoniazid resistance (level) was found. Except for the rare katG deletion, line probe assay is thus not sufficiently accurate to predict the level of isoniazid resistance for a single mutation in katG or inhA.

SUBMITTER: Lempens P 

PROVIDER: S-EPMC5818527 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations.

Lempens Pauline P   Meehan Conor J CJ   Vandelannoote Koen K   Fissette Kristina K   de Rijk Pim P   Van Deun Armand A   Rigouts Leen L   de Jong Bouke C BC  

Scientific reports 20180219 1


The majority of Mycobacterium tuberculosis isolates resistant to isoniazid harbour a mutation in katG. Since these mutations cause a wide range of minimum inhibitory concentrations (MICs), largely below the serum level reached with higher dosing (15 mg/L upon 15-20 mg/kg), the drug might still remain partly active in presence of a katG mutation. We therefore investigated which genetic mutations predict the level of phenotypic isoniazid resistance in clinical M. tuberculosis isolates. To this end  ...[more]

Similar Datasets

| S-EPMC7374161 | biostudies-literature
| S-EPMC5976185 | biostudies-literature
| S-EPMC2866272 | biostudies-literature
| S-EPMC3359338 | biostudies-literature
| S-EPMC4370653 | biostudies-literature
| S-EPMC6153850 | biostudies-literature
| S-EPMC3478209 | biostudies-literature
| S-EPMC3405577 | biostudies-literature
| S-EPMC2863633 | biostudies-literature
| S-EPMC1287806 | biostudies-literature