Unknown

Dataset Information

0

Localization of adaptive variants in human genomes using averaged one-dependence estimation.


ABSTRACT: Statistical methods for identifying adaptive mutations from population genetic data face several obstacles: assessing the significance of genomic outliers, integrating correlated measures of selection into one analytic framework, and distinguishing adaptive variants from hitchhiking neutral variants. Here, we introduce SWIF(r), a probabilistic method that detects selective sweeps by learning the distributions of multiple selection statistics under different evolutionary scenarios and calculating the posterior probability of a sweep at each genomic site. SWIF(r) is trained using simulations from a user-specified demographic model and explicitly models the joint distributions of selection statistics, thereby increasing its power to both identify regions undergoing sweeps and localize adaptive mutations. Using array and exome data from 45 ‡Khomani San hunter-gatherers of southern Africa, we identify an enrichment of adaptive signals in genes associated with metabolism and obesity. SWIF(r) provides a transparent probabilistic framework for localizing beneficial mutations that is extensible to a variety of evolutionary scenarios.

SUBMITTER: Sugden LA 

PROVIDER: S-EPMC5818606 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Localization of adaptive variants in human genomes using averaged one-dependence estimation.

Sugden Lauren Alpert LA   Atkinson Elizabeth G EG   Fischer Annie P AP   Rong Stephen S   Henn Brenna M BM   Ramachandran Sohini S  

Nature communications 20180219 1


Statistical methods for identifying adaptive mutations from population genetic data face several obstacles: assessing the significance of genomic outliers, integrating correlated measures of selection into one analytic framework, and distinguishing adaptive variants from hitchhiking neutral variants. Here, we introduce SWIF(r), a probabilistic method that detects selective sweeps by learning the distributions of multiple selection statistics under different evolutionary scenarios and calculating  ...[more]

Similar Datasets

| S-EPMC4229973 | biostudies-literature
| S-EPMC5466877 | biostudies-literature
2024-04-23 | GSE221928 | GEO
| S-EPMC6628113 | biostudies-literature
| S-EPMC8404348 | biostudies-literature
| S-EPMC5991517 | biostudies-literature
| S-EPMC6357349 | biostudies-literature
| S-EPMC3820951 | biostudies-literature
| S-EPMC6248928 | biostudies-literature
| S-EPMC10994307 | biostudies-literature