Unknown

Dataset Information

0

Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS.


ABSTRACT: Computational protein design provides the tools to expand the diversity of protein complexes beyond those found in nature. Understanding the rules that drive proteins to interact with each other enables the design of protein-protein interactions to generate specific protein assemblies. In this work, we designed protein-protein interfaces between dimers and trimers to generate dodecameric protein assemblies with dihedral point group symmetry. We subsequently analyzed the designed protein complexes by native MS. We show that the use of ion mobility MS in combination with surface-induced dissociation (SID) allows for the rapid determination of the stoichiometry and topology of designed complexes. The information collected along with the speed of data acquisition and processing make SID ion mobility MS well-suited to determine key structural features of designed protein complexes, thereby circumventing the requirement for more time- and sample-consuming structural biology approaches.

SUBMITTER: Sahasrabuddhe A 

PROVIDER: S-EPMC5819399 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS.

Sahasrabuddhe Aniruddha A   Hsia Yang Y   Busch Florian F   Sheffler William W   King Neil P NP   Baker David D   Wysocki Vicki H VH  

Proceedings of the National Academy of Sciences of the United States of America 20180119 6


Computational protein design provides the tools to expand the diversity of protein complexes beyond those found in nature. Understanding the rules that drive proteins to interact with each other enables the design of protein-protein interactions to generate specific protein assemblies. In this work, we designed protein-protein interfaces between dimers and trimers to generate dodecameric protein assemblies with dihedral point group symmetry. We subsequently analyzed the designed protein complexe  ...[more]

Similar Datasets

| S-EPMC2716685 | biostudies-literature
| S-EPMC2840274 | biostudies-literature
| S-EPMC4672929 | biostudies-literature
| S-EPMC2723003 | biostudies-literature
| S-EPMC3667664 | biostudies-literature
| S-EPMC4867096 | biostudies-literature
| S-EPMC6289172 | biostudies-literature
| S-EPMC4444062 | biostudies-other
| S-EPMC4234588 | biostudies-literature
| S-EPMC6153977 | biostudies-literature