Unknown

Dataset Information

0

A Two-Step Feature Selection Method to Predict Cancerlectins by Multiview Features and Synthetic Minority Oversampling Technique.


ABSTRACT: Cancerlectins have an inhibitory effect on the growth of cancer cells and are currently being employed as therapeutic agents. The accurate identification of the cancerlectins should provide insight into the molecular mechanisms of cancers. In this study, a new computational method based on the RF (Random Forest) algorithm is proposed for further improving the performance of identifying cancerlectins. Hybrid feature space before feature selection is developed by combining different individual feature spaces, CTD (Composition, Transition, and Distribution), PseAAC (Pseudo Amino Acid Composition), PSSM (Position-Specific Scoring Matrix), and disorder. The SMOTE (Synthetic Minority Oversampling Technique) is applied to solve the imbalanced data problem. To reduce feature redundancy and computation complexity, we propose a two-step feature selection process to select informative features. A 5-fold cross-validation technique is used for the evaluation of various prediction strategies. The proposed method achieves a sensitivity of 0.779, a specificity of 0.717, an accuracy of 0.748, and an MCC (Matthew's Correlation Coefficient) of 0.497. The prediction results are also compared with other existing methods on the same dataset using 5-fold cross-validation. The comparison results demonstrate the high effectiveness of our method for predicting cancerlectins.

SUBMITTER: Yang R 

PROVIDER: S-EPMC5820548 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Two-Step Feature Selection Method to Predict Cancerlectins by Multiview Features and Synthetic Minority Oversampling Technique.

Yang Runtao R   Zhang Chengjin C   Zhang Lina L   Gao Rui R  

BioMed research international 20180207


Cancerlectins have an inhibitory effect on the growth of cancer cells and are currently being employed as therapeutic agents. The accurate identification of the cancerlectins should provide insight into the molecular mechanisms of cancers. In this study, a new computational method based on the RF (Random Forest) algorithm is proposed for further improving the performance of identifying cancerlectins. Hybrid feature space before feature selection is developed by combining different individual fea  ...[more]

Similar Datasets

| S-EPMC10703015 | biostudies-literature
| S-EPMC9921618 | biostudies-literature
| S-EPMC8628853 | biostudies-literature
| S-EPMC8077735 | biostudies-literature
| S-EPMC7038475 | biostudies-literature
| S-EPMC4804474 | biostudies-literature
| S-EPMC6195279 | biostudies-literature
| S-EPMC7579987 | biostudies-literature
| S-EPMC7219047 | biostudies-literature
| S-EPMC3884825 | biostudies-literature