Unknown

Dataset Information

0

Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.


ABSTRACT: Importance:A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. Objective:To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Design, Setting, and Participants:Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494?661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76?370 images), possible glaucoma (125?189 images), and AMD (72?610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112?648 images), possible glaucoma (71?896 images), and AMD (35?948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Exposures:Use of a deep learning system. Main Outcomes and Measures:Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. Results:In the primary validation dataset (n?=?14?880 patients; 71?896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n?=?40?752 images). Conclusions and Relevance:In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.

SUBMITTER: Ting DSW 

PROVIDER: S-EPMC5820739 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.

Ting Daniel Shu Wei DSW   Cheung Carol Yim-Lui CY   Lim Gilbert G   Tan Gavin Siew Wei GSW   Quang Nguyen D ND   Gan Alfred A   Hamzah Haslina H   Garcia-Franco Renata R   San Yeo Ian Yew IY   Lee Shu Yen SY   Wong Edmund Yick Mun EYM   Sabanayagam Charumathi C   Baskaran Mani M   Ibrahim Farah F   Tan Ngiap Chuan NC   Finkelstein Eric A EA   Lamoureux Ecosse L EL   Wong Ian Y IY   Bressler Neil M NM   Sivaprasad Sobha S   Varma Rohit R   Jonas Jost B JB   He Ming Guang MG   Cheng Ching-Yu CY   Cheung Gemmy Chui Ming GCM   Aung Tin T   Hsu Wynne W   Lee Mong Li ML   Wong Tien Yin TY  

JAMA 20171201 22


<h4>Importance</h4>A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases.<h4>Objective</h4>To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes.<h4>Design, setting, and participants</h4>Diagnostic performance of a DLS  ...[more]

Similar Datasets

| S-EPMC5470403 | biostudies-literature
| S-EPMC8100867 | biostudies-literature
| S-EPMC7377280 | biostudies-literature
| S-EPMC7489388 | biostudies-literature
| S-EPMC6553744 | biostudies-literature
| S-EPMC7161968 | biostudies-literature
| S-EPMC8257963 | biostudies-literature
| S-EPMC8114804 | biostudies-literature
2022-12-31 | PXD034626 | Pride
| S-EPMC4365968 | biostudies-literature