Unknown

Dataset Information

0

Synthetic nat- or ent-steroids in as few as five chemical steps from epichlorohydrin.


ABSTRACT: Today, more than 100 Food and Drug Administration-approved steroidal agents are prescribed daily for indications including heart failure, inflammation, pain and cancer. While triumphs in organic chemistry have enabled the establishment and sustained growth of the steroid pharmaceutical industry, the production of highly functionalized synthetic steroids of varying substitution and stereochemistry remains challenging, despite the numerous reports of elegant strategies for their de novo synthesis. Here, we describe an advance in chemical synthesis that has established an enantiospecific means to access novel steroids with unprecedented facility and flexibility through the sequential use of two powerful ring-forming reactions: a modern metallacycle-mediated annulative cross-coupling and a new acid-catalysed vinylcyclopropane rearrangement cascade. In addition to accessing synthetic steroids of either enantiomeric series, these steroidal products have been selectively functionalized within each of the four carbocyclic rings, a synthetic ent-steroid has been prepared on a multigram scale, the enantiomer of a selective oestrogen has been synthesized, and a novel ent-steroid with growth inhibitory properties in three cancer cell lines has been discovered.

SUBMITTER: Kim WS 

PROVIDER: S-EPMC5821131 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthetic nat- or ent-steroids in as few as five chemical steps from epichlorohydrin.

Kim Wan Shin WS   Du Kang K   Eastman Alan A   Hughes Russell P RP   Micalizio Glenn C GC  

Nature chemistry 20170925 1


Today, more than 100 Food and Drug Administration-approved steroidal agents are prescribed daily for indications including heart failure, inflammation, pain and cancer. While triumphs in organic chemistry have enabled the establishment and sustained growth of the steroid pharmaceutical industry, the production of highly functionalized synthetic steroids of varying substitution and stereochemistry remains challenging, despite the numerous reports of elegant strategies for their de novo synthesis.  ...[more]

Similar Datasets

| S-EPMC4311710 | biostudies-literature
| S-EPMC4129415 | biostudies-literature
| S-EPMC29382 | biostudies-literature
| S-EPMC6976795 | biostudies-literature
| S-EPMC3328449 | biostudies-literature
| S-EPMC2563075 | biostudies-literature
| S-EPMC2869033 | biostudies-literature
| S-EPMC6688867 | biostudies-literature
| S-EPMC8131381 | biostudies-literature
| S-EPMC1855043 | biostudies-literature