Unknown

Dataset Information

0

Mechanistic Studies of Cobalt-Catalyzed C(sp2)-H Borylation of Five-Membered Heteroarenes with Pinacolborane.


ABSTRACT: Studies into the mechanism of cobalt-catalyzed C(sp2)-H borylation of five-membered heteroarenes with pinacolborane (HBPin) as the boron source established the catalyst resting state as the trans-cobalt(III) dihydride boryl, (iPrPNP)Co(H)2(BPin) (iPrPNP = 2,6-(iPr2PCH2)2(C5H3N)), at both low and high substrate conversions. The overall first-order rate law and observation of a normal deuterium kinetic isotope effect on the borylation of benzofuran versus benzofuran-2-d1 support H2 reductive elimination from the cobalt(III) dihydride boryl as the turnover-limiting step. These findings stand in contrast to that established previously for the borylation of 2,6-lutidine with the same cobalt precatalyst, where borylation of the 4-position of the pincer occurred faster than the substrate turnover and arene C-H activation by a cobalt(I) boryl is turnover-limiting. Evaluation of the catalytic activity of different cobalt precursors in the C-H borylation of benzofuran with HBPin established that the ligand design principles for C- H borylation depend on the identities of both the arene and the boron reagent used: electron-donating groups improve catalytic activity of the borylation of pyridines and arenes with B2Pin2, whereas electron-withdrawing groups improve catalytic activity of the borylation of five-membered heteroarenes with HBPin. Catalyst deactivation by P-C bond cleavage from a cobalt(I) hydride was observed in the C-H borylation of arene substrates with C-H bonds that are less acidic than those of five-membered heteroarenes using HBPin and explains the requirement of B2Pin2 to achieve synthetically useful yields with these arene substrates.

SUBMITTER: Obligacion JV 

PROVIDER: S-EPMC5822728 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mechanistic Studies of Cobalt-Catalyzed C(sp<sup>2</sup>)-H Borylation of Five-Membered Heteroarenes with Pinacolborane.

Obligacion Jennifer V JV   Chirik Paul J PJ  

ACS catalysis 20170517 7


Studies into the mechanism of cobalt-catalyzed C(sp<sup>2</sup>)-H borylation of five-membered heteroarenes with pinacolborane (HBPin) as the boron source established the catalyst resting state as the <i>trans</i>-cobalt(III) dihydride boryl, <b>(<sup>iPr</sup>PNP)Co(H)<sub>2</sub>(BPin)</b> (<sup>iPr</sup>PNP = 2,6-(<sup>i</sup>Pr<sub>2</sub>PCH<sub>2</sub>)<sub>2</sub>(C<sub>5</sub>H<sub>3</sub>N)), at both low and high substrate conversions. The overall first-order rate law and observation of  ...[more]

Similar Datasets

| S-EPMC7566956 | biostudies-literature
| S-EPMC8179051 | biostudies-literature
| S-EPMC5710005 | biostudies-literature
| S-EPMC7945986 | biostudies-literature
| S-EPMC4980089 | biostudies-literature
| S-EPMC3983327 | biostudies-literature
| S-EPMC7484944 | biostudies-literature
| S-EPMC4742333 | biostudies-literature
| S-EPMC8208323 | biostudies-literature
| S-EPMC5701518 | biostudies-literature