Unknown

Dataset Information

0

Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury.


ABSTRACT: BACKGROUND:Spinal cord injury (SCI) is a devastating condition mainly deriving from a traumatic damage of the spinal cord (SC). Immune cells and endogenous SC-neural stem cells (SC-NSCs) play a critical role in wound healing processes, although both are ineffective to completely restore tissue functioning. The role of SC-NSCs in SCI and, in particular, whether such cells can interplay with the immune response are poorly investigated issues, although mechanisms governing such interactions might open new avenues to develop novel therapeutic approaches. METHODS:We used two transgenic mouse lines to trace as well as to kill SC-NSCs in mice receiving SCI. We used Nestin CreERT2 mice to trace SC-NSCs descendants in the spinal cord of mice subjected to SCI. While mice carrying the suicide gene thymidine kinase (TK) along with the GFP reporter, under the control of the Nestin promoter regions (NestinTK mice) were used to label and selectively kill SC-NSCs. RESULTS:We found that SC-NSCs are capable to self-activate after SCI. In addition, a significant worsening of clinical and pathological features of SCI was observed in the NestinTK mice, upon selective ablation of SC-NSCs before the injury induction. Finally, mice lacking in SC-NSCs and receiving SCI displayed reduced levels of different neurotrophic factors in the SC and significantly higher number of M1-like myeloid cells. CONCLUSION:Our data show that SC-NSCs undergo cell proliferation in response to traumatic spinal cord injury. Mice lacking SC-NSCs display overt microglia activation and exaggerate expression of pro-inflammatory cytokines. The absence of SC-NSCs impaired functional recovery as well as neuronal and oligodendrocyte cell survival. Collectively our data indicate that SC-NSCs can interact with microglia/macrophages modulating their activation/responses and that such interaction is importantly involved in mechanisms leading tissue recovery.

SUBMITTER: Cusimano M 

PROVIDER: S-EPMC5824446 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury.

Cusimano Melania M   Brambilla Elena E   Capotondo Alessia A   De Feo Donatella D   Tomasso Antonio A   Comi Giancarlo G   D'Adamo Patrizia P   Muzio Luca L   Martino Gianvito G  

Journal of neuroinflammation 20180223 1


<h4>Background</h4>Spinal cord injury (SCI) is a devastating condition mainly deriving from a traumatic damage of the spinal cord (SC). Immune cells and endogenous SC-neural stem cells (SC-NSCs) play a critical role in wound healing processes, although both are ineffective to completely restore tissue functioning. The role of SC-NSCs in SCI and, in particular, whether such cells can interplay with the immune response are poorly investigated issues, although mechanisms governing such interactions  ...[more]

Similar Datasets

2021-05-01 | GSE171441 | GEO
| S-EPMC5110012 | biostudies-literature
| S-EPMC9893225 | biostudies-literature
| S-EPMC7326330 | biostudies-literature
| S-EPMC3592852 | biostudies-literature
| S-EPMC9076533 | biostudies-literature
| S-EPMC6076268 | biostudies-literature
| S-EPMC3742731 | biostudies-literature
| S-EPMC5359686 | biostudies-literature
| S-EPMC8643069 | biostudies-literature