Ontology highlight
ABSTRACT: Background
Vesiviruses (family Caliciviridae) had been shown capable of invading a variety of host species, raising concern of their zoonotic potential. Since the 1980's, several canine caliciviruses (CaCV) isolates have been reported and are phylogenetically related to the vesiviruses with features distinct from both Vesicular exanthema of swine virus (VESV) and Feline calicivirus (FCV) species in phylogeny, serology and cell culture specificities. Etiological studies of canine diseases in dogs used for military services and laboratory studies were conducted in 1963-1978 at the Walter Reed Army Institute of Research. Multiple known and unknown viral pathogens including caliciviruses were recovered.Methods
Four unidentified isolates were recovered in Walter Reed Canine Cells (WRCC) from respiratory, fecal and penile specimens. Physicochemical tests, electron microscopy, viral cultivation in human and animal cells, antibody neutralization assays, and recently the genome sequencing were used to characterize the isolates. Sera from these dogs and their cohorts were tested with the isolates to determine origin and prevalence of the infections.Results
The viral isolates were small non-enveloped spherical RNA virions, 27 to 42 nm in diameter with cup-like structures, indicating they are caliciviruses. They propagated in WRCC and MDCK cells, not in either other canine cells or human and other animal cells. Each isolate is antigenically distinct and react with dog sera in respective cohorts. The genomes have nucleotide identities ranging from 70.3% to 90.7% and encode the non-structural polyprotein (1810 amino acids), major capsid protein (691 amino acids) and minor structural protein (134 amino acids). They belong to two different phylogenetic clades in Vesivirus genus with close relation with canine calicivirus (CaCV).Conclusions
These CaCV isolates have restricted cell tropism, antigenic diversity and genetic variation. Further investigation will shed light on antigenic relation to other vesiviruses, and its pathogenicity for dogs and potential infectivity to other animals. Together with the previously reported CaCV strains provides significant evidence to support the formation of a new CaCV species in the Vesivirus genus.
SUBMITTER: Binn LN
PROVIDER: S-EPMC5824495 | biostudies-literature |
REPOSITORIES: biostudies-literature