Unknown

Dataset Information

0

Polysaccharide IV from Lycium barbarum L. Improves Lipid Profiles of Gestational Diabetes Mellitus of Pregnancy by Upregulating ABCA1 and Downregulating Sterol Regulatory Element-Binding Transcription 1 via miR-33.


ABSTRACT: Lycium barbarum L. (LBL) has beneficial effects on gestational diabetes mellitus (GDM) but the related mechanism remains unclear. Polysaccharides of LBL (LBLP) are the main bioactive components of LBL. miR-33, ATP-binding cassette transporter A1 (ABCA1) and sterol regulatory element-binding transcription 1 (SREBF1) affect lipid profiles, which are associated with GDM risk. LBLP may exert protective against GDM by affecting these molecules. Four LBLP fractions: LBLP-I, LBLP-II, LBLP-III, and LBLP-IV were isolated from LBL and further purified by using DEAE-Sephadex column. The effects of purified each fraction on pancreatic beta cells were comparatively evaluated. A total of 158 GDM patients were recruited and randomly divided into LBL group (LG) and placebo group (CG). miR-33 levels, lipid profiles, insulin resistance and secretory functions were measured. The association between serum miR-33 levels and lipid profiles were evaluated by using Spearman's rank-order correlation test. After 4-week therapy, LBL reduced miR-33 level, insulin resistance and increased insulin secretion of GDM patients. LBL increased the levels of ABCA1, high-density lipoprotein cholesterol (HDL-C) and reduced miR-33, SREBF1, low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and malondialdehyde. Homeostatic model assessment of ?-cell function and insulin resistance was lower in LG than in CG, whereas homeostatic model assessment of ?-cell function and insulin secretory function was higher in LG than in CG. There was a strong positive association between miR-33 level and TG, or TC and or LDL-C, and a strong negative association between miR-33 level and HDL-C. The levels of miR-33 had negative relation with ABCA1 and positive relation with SREBF1. ABCA1 has negative relation with TG, TC, and LDL-C and positive relation with HDL-C. Inversely, SREBF1 had positive relation with TG, TC, and LDL-C and negative relation with HDL-C. The main bioactive compound LBLP-IV of LBL increased insulin secretion of beta cells and the levels of ABCA1, and reduced miR-33 levels and SREBF1 in beta cells. However, LBLP-IV could not change the levels of these molecules anymore when miR-33 was overexpressed or silenced. LBLP-IV had the similar effects with LBL on beta cells while other components had no such effects. Thus, LBLP-IV from LBL improves lipid profiles by upregulating ABCA1 and downregulating SREBF1 via miR-33.

SUBMITTER: Yang S 

PROVIDER: S-EPMC5829030 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polysaccharide IV from <i>Lycium barbarum L</i>. Improves Lipid Profiles of Gestational Diabetes Mellitus of Pregnancy by Upregulating ABCA1 and Downregulating Sterol Regulatory Element-Binding Transcription 1 <i>via</i> miR-33.

Yang Shuli S   Si Lihui L   Fan Limei L   Jian Wenwen W   Pei Huilin H   Lin Ruixin R  

Frontiers in endocrinology 20180223


<i>Lycium barbarum L</i>. (LBL) has beneficial effects on gestational diabetes mellitus (GDM) but the related mechanism remains unclear. Polysaccharides of LBL (LBLP) are the main bioactive components of LBL. miR-33, ATP-binding cassette transporter A1 (ABCA1) and sterol regulatory element-binding transcription 1 (SREBF1) affect lipid profiles, which are associated with GDM risk. LBLP may exert protective against GDM by affecting these molecules. Four LBLP fractions: LBLP-I, LBLP-II, LBLP-III, a  ...[more]

Similar Datasets

2024-06-01 | GSE218507 | GEO
| S-EPMC7996006 | biostudies-literature
2020-03-23 | GSE122570 | GEO
| PRJNA317623 | ENA
| PRJNA417525 | ENA
| PRJNA508843 | ENA
| PRJNA415350 | ENA
| PRJNA292847 | ENA
| PRJNA541217 | ENA
| PRJNA351229 | ENA