Humans quickly learn to blink strategically in response to environmental task demands.
Ontology highlight
ABSTRACT: Eye blinking is one of the most frequent human actions. The control of blinking is thought to reflect complex interactions between maintaining clear and healthy vision and influences tied to central dopaminergic functions including cognitive states, psychological factors, and medical conditions. The most imminent consequence of blinking is a temporary loss of vision. Minimizing this loss of information is a prominent explanation for changes in blink rates and temporarily suppressed blinks, but quantifying this loss is difficult, as environmental regularities are usually complex and unknown. Here we used a controlled detection experiment with parametrically generated event statistics to investigate human blinking control. Subjects were able to learn environmental regularities and adapted their blinking behavior strategically to better detect future events. Crucially, our design enabled us to develop a computational model that allows quantifying the consequence of blinking in terms of task performance. The model formalizes ideas from active perception by describing blinking in terms of optimal control in trading off intrinsic costs for blink suppression with task-related costs for missing an event under perceptual uncertainty. Remarkably, this model not only is sufficient to reproduce key characteristics of the observed blinking behavior such as blink suppression and blink compensation but also predicts without further assumptions the well-known and diverse distributions of time intervals between blinks, for which an explanation has long been elusive.
SUBMITTER: Hoppe D
PROVIDER: S-EPMC5834680 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA