Association of MicroRNA Biogenesis Genes Polymorphisms with Ischemic Stroke Susceptibility and Post-Stroke Mortality.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE:MicroRNA (miRNA) expression has been examined in multiple conditions, including various cancers, neurological diseases, and cerebrovascular diseases, particularly stroke. Existing evidence indicates that miRNA biosynthesis and function play crucial roles in ischemic stroke physiology and pathology. In this study, we selected six known polymorphisms in miRNA-biogenesis genes; DICER rs13078A>T, rs3742330A>G; DROSHA rs10719T>C, rs6877842G>C; Ran GTPase (RAN) rs14035C>T; exportin 5 (XPO5) rs11077A>C. METHODS:We analyzed the associations between these polymorphisms and disease status and clinical factors in 585 ischemic stroke patients and 403 controls. Genotyping was performed with the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS:The DICER rs3742330A>G (AA vs. AG+GG: adjusted odds ratio [AOR], 1.360; 95% confidence interval [CI], 1.024 to 1.807; P=0.034) and DROSHA rs10719T>C polymorphisms (TT vs. CC: AOR, 2.038; 95% CI, 1.113 to 3.730; P=0.021) were associated with ischemic stroke prevalence. During a mean follow-up of 4.80±2.11 years, 99 (5.91%) of the stroke patients died. In multivariate Cox proportional hazard regression models, a significant association was found between RAN rs14035 and survival of large artery disease patients with ischemic stroke (CC vs. TT: adjusted hazard ratio, 5.978; P=0.015). CONCLUSIONS:An association was identified between the DICER and DROSHA polymorphisms and ischemic stroke. Specifically, polymorphisms (rs3742330 and rs10719) were more common in stroke patients, suggesting that they may be associated with an increased risk of ischemic stroke.
SUBMITTER: Kim JO
PROVIDER: S-EPMC5836584 | biostudies-literature | 2018 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA