Unknown

Dataset Information

0

De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca2+ sensitivity.


ABSTRACT: Epilepsy is one of the most common neurological diseases and it causes profound morbidity and mortality. We identified the first de novo variant in KCNMA1 (c.2984?A?>?G (p.(N995S)))-encoding the BK channel-that causes epilepsy, but not paroxysmal dyskinesia, in two independent families. The c.2984?A?>?G (p.(N995S)) variant markedly increased the macroscopic potassium current by increasing both the channel open probability and channel open dwell time. The c.2984?A?>?G (p.(N995S)) variant did not affect the calcium sensitivity of the channel. We also identified three other variants of unknown significance (c.1554?G?>?T (p.(K518N)), c.1967A?>?C (p.(E656A)), and c.3476?A?>?G (p.(N1159S))) in three separate patients with divergent epileptic phenotypes. However, these variants did not affect the BK potassium current, and are therefore unlikely to be disease-causing. These results demonstrate that BK channel variants can cause epilepsy without paroxysmal dyskinesia. The underlying molecular mechanism can be increased activation of the BK channel by increased sensitivity to the voltage-dependent activation without affecting the sensitivity to the calcium-dependent activation. Our data suggest that the BK channel may represent a drug target for the treatment of epilepsy. Our data highlight the importance of functional electrophysiological studies of BK channel variants in distinguishing whether a genomic variant of unknown significance is a disease-causing variant or a benign variant.

SUBMITTER: Li X 

PROVIDER: S-EPMC5839055 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca<sup>2+</sup> sensitivity.

Li Xia X   Poschmann Sibylle S   Chen Qiuyun Q   Fazeli Walid W   Oundjian Nelly Jouayed NJ   Snoeijen-Schouwenaars Francesca M FM   Fricke Oliver O   Kamsteeg Erik-Jan EJ   Willemsen Marjolein M   Wang Qing Kenneth QK  

European journal of human genetics : EJHG 20180112 2


Epilepsy is one of the most common neurological diseases and it causes profound morbidity and mortality. We identified the first de novo variant in KCNMA1 (c.2984 A > G (p.(N995S)))-encoding the BK channel-that causes epilepsy, but not paroxysmal dyskinesia, in two independent families. The c.2984 A > G (p.(N995S)) variant markedly increased the macroscopic potassium current by increasing both the channel open probability and channel open dwell time. The c.2984 A > G (p.(N995S)) variant did not  ...[more]

Similar Datasets

| S-EPMC3503226 | biostudies-literature
| S-EPMC3121532 | biostudies-literature
| S-EPMC2266574 | biostudies-literature
| S-EPMC2654085 | biostudies-literature
| S-EPMC24695 | biostudies-literature
| S-EPMC2907746 | biostudies-literature
| S-EPMC6301790 | biostudies-literature
| S-EPMC4988589 | biostudies-literature
| S-EPMC5765161 | biostudies-literature
| S-EPMC6795554 | biostudies-literature