Unknown

Dataset Information

0

Metabolism and Photolysis of 2,4-Dinitroanisole in Arabidopsis.


ABSTRACT: New insensitive munitions explosives, including 2,4-dinitroanisole (DNAN), are replacing traditional explosive compounds to protect soldiers and simplify transport logistics. Despite the occupational safety benefits of these new explosives, feasible strategies for cleaning up DNAN from soil and water have not been developed. Here, we evaluate the metabolism of DNAN by the model plant Arabidopsis to determine whether phytoremediation can be used to clean up contaminated sites. Furthermore, we evaluate the role of photodegradation of DNAN and its plant metabolites within Arabidopsis leaves to determine the potential impact of photolysis on the phytoremediation of contaminants. When exposed to DNAN for three days, Arabidopsis took up and metabolized 67% of the DNAN in hydroponic solution. We used high resolution and tandem mass spectrometry in combination with stable-isotope labeled DNAN to confirm ten phase II DNAN metabolites in Arabidopsis. The plants separately reduced both the para- and ortho-nitro groups and produced glycosylated products that accumulated within plant tissues. Both DNAN and a glycosylated metabolite were subsequently photolyzed within leaf tissue under simulated sunlight, and [15N2]DNAN yielded 15NO2- in leaves. Therefore, photolysis inside leaves may be an important, yet under-explored, phytoremediation mechanism.

SUBMITTER: Schroer HW 

PROVIDER: S-EPMC5839145 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metabolism and Photolysis of 2,4-Dinitroanisole in Arabidopsis.

Schroer Hunter W HW   Li Xueshu X   Lehmler Hans-Joachim HJ   Just Craig L CL  

Environmental science & technology 20171113 23


New insensitive munitions explosives, including 2,4-dinitroanisole (DNAN), are replacing traditional explosive compounds to protect soldiers and simplify transport logistics. Despite the occupational safety benefits of these new explosives, feasible strategies for cleaning up DNAN from soil and water have not been developed. Here, we evaluate the metabolism of DNAN by the model plant Arabidopsis to determine whether phytoremediation can be used to clean up contaminated sites. Furthermore, we eva  ...[more]

Similar Datasets

| S-EPMC4695256 | biostudies-literature
| S-EPMC5772970 | biostudies-literature
| S-EPMC5772931 | biostudies-literature
| S-EPMC4249229 | biostudies-literature
| S-EPMC5052101 | biostudies-literature
| S-EPMC4951038 | biostudies-literature
| S-EPMC11003239 | biostudies-literature
| S-EPMC6293504 | biostudies-literature
| S-EPMC9694108 | biostudies-literature
| S-EPMC1176812 | biostudies-other