Unknown

Dataset Information

0

Bcl-2 regulates store-operated Ca2+ entry to modulate ER stress-induced apoptosis.


ABSTRACT: Ca2+ plays a significant role in linking the induction of apoptosis. The key anti-apoptotic protein, Bcl-2, has been reported to regulate the movement of Ca2+ across the ER membrane, but the exact effect of Bcl-2 on Ca2+ levels remains controversial. Store-operated Ca2+ entry (SOCE), a major mode of Ca2+ uptake in non-excitable cells, is activated by depletion of Ca2+ in the ER. Depletion of Ca2+ in the ER causes translocation of the SOC channel activator, STIM1, to the plasma membrane. Thereafter, STIM1 binds to Orai1 or/and TRPC1 channels, forcing them to open and thereby allow Ca2+ entry. In addition, several anti-cancer drugs have been reported to induce apoptosis of cancer cells via the SOCE pathway. However, the detailed mechanism underlying the regulation of SOCE by Bcl-2 is not well understood. In this study, a three-amino acid mutation within the Bcl-2 BH1 domain was generated to verify the role of Bcl-2 in Ca2+ handling during ER stress. The subcellular localization of the Bcl-2 mutant (mt) is similar to that in the wild-type Bcl-2 (WT) in the ER and mitochondria. We found that mt enhanced thapsigargin and tunicamycin-induced apoptosis through ER stress-mediated apoptosis but not through the death receptor- and mitochondria-dependent apoptosis, while WT prevented thapsigargin- and tunicamycin-induced apoptosis. In addition, mt depleted Ca2+ in the ER lumen and also increased the expression of SOCE-related molecules. Therefore, a massive Ca2+ influx via SOCE contributed to caspase activation and apoptosis. Furthermore, inhibiting SOCE or chelating either extracellular or intracellular Ca2+ inhibited mt-mediated apoptosis. In brief, our results explored the critical role of Bcl-2 in Ca2+ homeostasis and the modulation of ER stress.

SUBMITTER: Chiu WT 

PROVIDER: S-EPMC5841437 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bcl<sup>-</sup>2 regulates store-operated Ca<sup>2+</sup> entry to modulate ER stress-induced apoptosis.

Chiu Wen-Tai WT   Chang Heng-Ai HA   Lin Yi-Hsin YH   Lin Yu-Shan YS   Chang Hsiao-Tzu HT   Lin Hsi-Hui HH   Huang Soon-Cen SC   Tang Ming-Jer MJ   Shen Meng-Ru MR  

Cell death discovery 20180226


Ca<sup>2+</sup> plays a significant role in linking the induction of apoptosis. The key anti-apoptotic protein, Bcl-2, has been reported to regulate the movement of Ca<sup>2+</sup> across the ER membrane, but the exact effect of Bcl-2 on Ca<sup>2+</sup> levels remains controversial. Store-operated Ca<sup>2+</sup> entry (SOCE), a major mode of Ca<sup>2+</sup> uptake in non-excitable cells, is activated by depletion of Ca<sup>2+</sup> in the ER. Depletion of Ca<sup>2+</sup> in the ER causes transl  ...[more]

Similar Datasets

| S-EPMC2693300 | biostudies-literature
| S-EPMC8255033 | biostudies-literature
| S-EPMC5987725 | biostudies-literature
| S-EPMC3931742 | biostudies-literature
| S-EPMC7860125 | biostudies-literature
| S-EPMC5096923 | biostudies-literature
| S-EPMC8391525 | biostudies-literature
| S-EPMC380968 | biostudies-literature
| S-EPMC5928347 | biostudies-literature
| S-EPMC4577984 | biostudies-literature