Clinical and laboratory predictors of influenza infection among individuals with influenza-like illness presenting to an urban Thai hospital over a five-year period.
Ontology highlight
ABSTRACT: Early diagnosis of influenza infection maximizes the effectiveness of antiviral medicines. Here, we assess the ability for clinical characteristics and rapid influenza tests to predict PCR-confirmed influenza infection in a sentinel, cross-sectional study for influenza-like illness (ILI) in Thailand. Participants meeting criteria for acute ILI (fever > 38°C and cough or sore throat) were recruited from inpatient and outpatient departments in Bangkok, Thailand, from 2009-2014. The primary endpoint for the study was the occurrence of virologically-confirmed influenza infection (based upon detection of viral RNA by RT-PCR) among individuals presenting for care with ILI. Nasal and throat swabs were tested by rapid influenza test (QuickVue) and by RT-PCR. Vaccine effectiveness (VE) was calculated using the case test-negative method. Classification and Regression Tree (CART) analysis was used to predict influenza RT-PCR positivity based upon symptoms reported. We enrolled 4572 individuals with ILI; 32.7% had detectable influenza RNA by RT-PCR. Influenza cases were attributable to influenza B (38.6%), A(H1N1)pdm09 (35.1%), and A(H3N2) (26.3%) viruses. VE was highest against influenza A(H1N1)pdm09 virus and among adults. The most important symptoms for predicting influenza PCR-positivity among patients with ILI were cough, runny nose, chills, and body aches. The accuracy of the CART predictive model was 72.8%, with an NPV of 78.1% and a PPV of 59.7%. During epidemic periods, PPV improved to 68.5%. The PPV of the QuickVue assay relative to RT-PCR was 93.0% overall, with peak performance during epidemic periods and in the absence of oseltamivir treatment. Clinical criteria demonstrated poor predictive capability outside of epidemic periods while rapid tests were reasonably accurate and may provide an acceptable alternative to RT-PCR testing in resource-limited areas.
SUBMITTER: Anderson KB
PROVIDER: S-EPMC5841736 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA