ABSTRACT: Visual attentional bias forms for rewarding and punishing stimuli in the environment. While this attentional bias is adaptive in healthy situations, it is maladaptive in disorders such as drug addiction or PTSD. In both these disorders, the ability to exert control over this attentional bias is associated with drug abstinence rates or reduced PTSD symptoms, indicating the interaction of visual attention, cognitive control, and stimulus association. The inferior parietal lobule (IPL) is central to attention, while the prefrontal cortex (PFC) is critical for reward, cognitive control, and attention. Importantly, regions of the IPL and PFC commonly project to the rostral dorsal caudate (rdCaud) of the striatum. We propose an anatomical network architecture in which IPL projections converge with PFC projections in a connectional hub in the rdCaud, providing an anatomical substrate for the interaction of these projections and their competitive influence on striatal processing. To investigate this, we mapped the dense projections from the caudal IPL and prefrontal (dlPFC, vlPFC, OFC, dACC, and dmPFC) regions that project to the medial rdCaud with anatomical tract-tracing tracer injections in monkeys. These inputs converge in a precise site in the medial rdCaud, rostral to the anterior commissure. Small retrograde tracer injections confirmed these inputs to the medial rdCaud and showed that a proximal ventral striatal location has a very different pattern of cortical inputs. We next used human resting-state functional connectivity MRI (fcMRI) to examine whether a striatal hub exists in the human medial rdCaud. Seed regions in the human medial rdCaud revealed cortical correlation maps similar to the monkey retrograde injection results. A subsequent analysis of these correlated cortical regions showed that their peak correlation within the striatum is in the medial rdCaud, indicating that this is a connectional hub. In contrast, this peak striatal correlation was not found in the ventral striatal location, suggesting that this site is not a connectional hub of cortical regions. Taken together, this work uses the precision of monkey anatomy to identify a connectional hub of IPL and PFC projections in the medial rdCaud. It also translates this anatomical precision to humans, demonstrating that, guided by anatomy, connectional hubs can be identified in humans with fcMRI. These connectional hubs provide more specific treatment targets for drug addiction, PTSD, and other neurological and psychiatric disorders involving the striatum.