Unknown

Dataset Information

0

Susceptibility to Hypertensive Renal Disease in the Spontaneously Hypertensive Rat Is Influenced by 2 Loci Affecting Blood Pressure and Immunoglobulin Repertoire.


ABSTRACT: High blood pressure exerts its deleterious effects on health largely through acceleration of end-organ diseases. Among these, progressive loss of renal function is particularly important, not only for the direct consequences of kidney damage but also because loss of renal function is associated with amplification of other adverse cardiovascular outcomes. Genetic susceptibility to hypertension and associated end-organ disease is non-Mendelian in both humans and in a rodent model, the spontaneously hypertensive rat (SHR). Here, we report that hypertensive end-organ disease in the inbred SHR-A3 line is attributable to genetic variation in the immunoglobulin heavy chain on chromosome 6. This variation coexists with variation in a 10 Mb block on chromosome 17 that contains genetic variation in 2 genes involved in immunoglobulin Fc receptor signaling. Substitution of these genomic regions into the SHR-A3 genome from the closely related, but injury-resistant, SHR-B2 line normalizes both biomarker and histological measures of renal injury. Our findings indicate that genetic variation leads to a contribution by immune mechanisms hypertensive end-organ injury and that, in this rat model, disease is influenced by differences in germ line antibody repertoire.

SUBMITTER: Dhande IS 

PROVIDER: S-EPMC5843527 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Susceptibility to Hypertensive Renal Disease in the Spontaneously Hypertensive Rat Is Influenced by 2 Loci Affecting Blood Pressure and Immunoglobulin Repertoire.

Dhande Isha S IS   Cranford Stacy M SM   Zhu Yaming Y   Kneedler Sterling C SC   Hicks M John MJ   Wenderfer Scott E SE   Braun Michael C MC   Doris Peter A PA  

Hypertension (Dallas, Tex. : 1979) 20180205 4


High blood pressure exerts its deleterious effects on health largely through acceleration of end-organ diseases. Among these, progressive loss of renal function is particularly important, not only for the direct consequences of kidney damage but also because loss of renal function is associated with amplification of other adverse cardiovascular outcomes. Genetic susceptibility to hypertension and associated end-organ disease is non-Mendelian in both humans and in a rodent model, the spontaneousl  ...[more]

Similar Datasets

| S-EPMC4046892 | biostudies-literature
| S-EPMC5266550 | biostudies-literature
| S-EPMC3792033 | biostudies-literature
| S-EPMC3855556 | biostudies-literature
| S-EPMC3727021 | biostudies-literature
| S-EPMC5719042 | biostudies-literature
| S-EPMC4721537 | biostudies-literature
| S-EPMC3692469 | biostudies-literature
| S-EPMC6405665 | biostudies-literature
| S-EPMC5721872 | biostudies-other