Project description:The hormone erythroferrone (ERFE) is produced by erythroid cells in response to hemorrhage, hypoxia, or other erythropoietic stimuli, and it suppresses the hepatic production of the iron-regulatory hormone hepcidin, thereby mobilizing iron for erythropoiesis. Suppression of hepcidin by ERFE is believed to be mediated by interference with paracrine bone morphogenetic protein (BMP) signaling that regulates hepcidin transcription in hepatocytes. In anemias with ineffective erythropoiesis, ERFE is pathologically overproduced, but its contribution to the clinical manifestations of these anemias is not well understood. We generated 3 lines of transgenic mice with graded erythroid overexpression of ERFE and found that they developed dose-dependent iron overload, impaired hepatic BMP signaling, and relative hepcidin deficiency. These findings add to the evidence that ERFE is a mediator of iron overload in conditions in which ERFE is overproduced, including anemias with ineffective erythropoiesis. At the highest levels of ERFE overexpression, the mice manifested decreased perinatal survival, impaired growth, small hypofunctional kidneys, decreased gonadal fat depots, and neurobehavioral abnormalities, all consistent with impaired organ-specific BMP signaling during development. Neutralizing excessive ERFE in congenital anemias with ineffective erythropoiesis may not only prevent iron overload but may have additional benefits for growth and development.
Project description:The liver, as the major organ for iron storage and production of hepcidin, plays pivotal roles in maintaining mammalian iron homeostasis. A previous study showed that Quantitative Trait Loci (QTLs) on chromosome 7 (Chr7) and 16 (Chr16) may control hepatic non-heme iron overload in an F2 intercross derived from C57BL/6J (B6) and SWR/J (SWR) mice. In this study, we aimed to validate the existence of these loci and identify the genes responsible for the phenotypic variations by generating congenic mice carrying SWR chromosome segments expanding these QTLs (D7Mit68-D7Mit71 and D16Mit125-D16Mit185, respectively). We excluded involvement of Chr7 based on the lack of iron accumulation in congenic mice. In contrast, liver iron accumulation was observed in Chr16 congenic mice. Through use of a series of subcongenic murine lines the interval on Chr16 was further fine-mapped to a 0.8 Mb segment spanning 11 genes. We found that the mRNA expression pattern in the liver remained unchanged for all 11 genes tested. Most importantly, we detected 4 missense mutations in 3 candidate genes including Sidt1 (P172R), Spice1(R708S), Boc (Q1051R) and Boc (S450-insertion in B6 allele) in the liver of SWR homozygous congenic mice. To further delineate potential modifier gene(s), we reconstituted seven candidate genes, Sidt1, Boc, Zdhhc23, Gramd1c, Atp6v1a, Naa50 and Gtpbp8, in mouse liver through hydrodynamic transfection. However, we were unable to detect significant changes in liver iron levels upon reconstitution of these candidate genes. Taken together, our work provides strong genetic evidence of the existence of iron modifiers on Chr16. Moreover, we were able to delineate the phenotypically responsible region to a 0.8 Mb region containing 11 coding genes, 3 of which harbor missense mutations, using a series of congenic mice.
Project description:The inhibitory Smad7 acts as a critical suppressor of hepcidin, the major regulator of systemic iron homeostasis. In this study we define the mRNA expression of the two functionally related Smad proteins, Smad6 and Smad7, within pathways known to regulate hepcidin levels. Using mouse models for hereditary hemochromatosis (Hfe-, TfR2-, Hfe/TfR2-, Hjv- and hepcidin1-deficient mice) we show that hepcidin, Smad6 and Smad7 mRNA expression is coordinated in such a way that it correlates with the activity of the Bmp/Smad signaling pathway rather than with liver iron levels. This regulatory circuitry is disconnected by iron treatment of Hfe-/- and Hfe/TfR2 mice that significantly increases hepatic iron levels as well as hepcidin, Smad6 and Smad7 mRNA expression but fails to augment pSmad1/5/8 levels. This suggests that additional pathways contribute to the regulation of hepcidin, Smad6 and Smad7 under these conditions which do not require Hfe.
Project description:There is considerable evidence that both retinoids and retinol-binding protein 4 (RBP4) contribute to the development of liver disease. To understand the basis for this, we generated and studied transgenic mice that express human RBP4 (hRBP4) specifically in adipocytes. When fed a chow diet, these mice show an elevation in adipose total RBP4 (mouse RBP4 + hRBP4) protein levels. However, no significant differences in plasma RBP4 or retinol levels or in hepatic or adipose retinoid (retinol, retinyl ester, and all-trans-retinoic acid) levels were observed. Strikingly, male adipocyte-specific hRBP4 mice fed a standard chow diet display significantly elevated hepatic triglyceride levels at 3-4 months of age compared to matched littermate controls. When mice were fed a high-fat diet, this hepatic phenotype, as well as other metabolic phenotypes (obesity and glucose intolerance), worsened. Because adipocyte-specific hRBP4 mice have increased tumor necrosis factor-α and leptin expression and crown-like structures in adipose tissue, our data are consistent with the notion that adipose tissue is experiencing RBP4-induced inflammation that stimulates increased lipolysis within adipocytes. Our data further establish that elevated hepatic triglyceride levels result from increased hepatic uptake of adipose-derived circulating free fatty acids. We obtained no evidence that elevated hepatic triglyceride levels arise from increased hepatic de novo lipogenesis, decreased hepatic free fatty acid oxidation, or decreased very-low-density lipoprotein secretion.ConclusionOur investigations establish that RBP4 expressed in adipocytes induces hepatic steatosis arising from primary effects occurring in adipose tissue. (Hepatology 2016;64:1534-1546).
Project description:Biochemical studies have shown that Smad7 blocks signal transduction of transforming growth factor beta (TGFbeta); however, its in vivo functions are largely unknown. To determine the functions of Smad7, we have expressed Smad7 in transgenic mice, utilizing a keratin K5 promoter (K5.Smad7). K5.Smad7 mice exhibited pathological changes in multiple tissues and died within 10 days after birth. These mice were born with open eyelids and corneal defects, significantly delayed and aberrant hair follicle morphogenesis, and hyperproliferation in the epidermis and other stratified epithelia. Furthermore, K5.Smad7 mice developed severe thymic atrophy and massive thymocyte death, suggesting that Smad signaling in thymic epithelia is essential for thymocyte survival. Interestingly, in addition to a reduction in Smad phosphorylation, the protein levels of the receptors for TGFbeta, activin and bone morphogenetic protein were significantly decreased in the affected tissues of K5.Smad7 mice. Our study provides evidence that Smad7 is a potent in vivo inhibitor for signal transduction of the TGFbeta superfamily during development and maintenance of homeostasis of multiple epithelial tissues.
Project description:Iron-related disorders are among the most prevalent diseases worldwide. Systemic iron homeostasis requires hepcidin, a liver-derived hormone that controls iron mobilization through its molecular target ferroportin (FPN), the only known mammalian iron exporter. This pathway is perturbed in diseases that cause iron overload. Additionally, intestinal HIF-2? is essential for the local absorptive response to systemic iron deficiency and iron overload. Our data demonstrate a hetero-tissue crosstalk mechanism, whereby hepatic hepcidin regulated intestinal HIF-2? in iron deficiency, anemia, and iron overload. We show that FPN controlled cell-autonomous iron efflux to stabilize and activate HIF-2? by regulating the activity of iron-dependent intestinal prolyl hydroxylase domain enzymes. Pharmacological blockade of HIF-2? using a clinically relevant and highly specific inhibitor successfully treated iron overload in a mouse model. These findings demonstrate a molecular link between hepatic hepcidin and intestinal HIF-2? that controls physiological iron uptake and drives iron hyperabsorption during iron overload.
Project description:Liver injury in COVID-19 patients has progressively emerged, even in those without a history of liver disease, yet the mechanism of liver pathogenicity is still controversial. COVID-19 is frequently associated with increased serum ferritin levels, and hyperferritinemia was shown to correlate with illness severity. The liver is the major site for iron storage, and conditions of iron overload have been established to have a pathogenic role in development of liver diseases. We presented here six patients who developed severe COVID-19, with biochemical evidence of liver failure. Three cases were survived patients, who underwent liver biopsy; the other three were deceased patients, who were autopsied. None of the patients suffered underlying liver pathologies. Histopathological and ultrastructural analyses were performed. The most striking finding we demonstrated in all patients was iron accumulation into hepatocytes, associated with degenerative changes. Abundant ferritin particles were found enclosed in siderosomes, and large aggregates of hemosiderin were found, often in close contact with damaged mitochondria. Iron-caused oxidative stress may be responsible for mitochondria metabolic dysfunction. In agreement with this, association between mitochondria and lipid droplets was also found. Overall, our data suggest that hepatic iron overload could be the pathogenic trigger of liver injury associated to COVID-19.
Project description:Iron is an essential co-factor for many cellular metabolic processes, and mitochondria are main sites of utilization. Iron accumulation promotes production of reactive oxygen species (ROS) via the catalytic activity of iron species. Herein, we investigated the consequences of dietary and genetic iron overload on mitochondrial function. C57BL/6N wildtype and Hfe-/- mice, the latter a genetic hemochromatosis model, received either normal diet (ND) or high iron diet (HI) for two weeks. Liver mitochondrial respiration was measured using high-resolution respirometry along with analysis of expression of specific proteins and ROS production. HI promoted tissue iron accumulation and slightly affected mitochondrial function in wildtype mice. Hepatic mitochondrial function was impaired in Hfe-/- mice on ND and HI. Compared to wildtype mice, Hfe-/- mice on ND showed increased mitochondrial respiratory capacity. Hfe-/- mice on HI showed very high liver iron levels, decreased mitochondrial respiratory capacity and increased ROS production associated with reduced mitochondrial aconitase activity. Although Hfe-/- resulted in increased mitochondrial iron loading, the concentration of metabolically reactive cytoplasmic iron and mitochondrial density remained unchanged. Our data show multiple effects of dietary and genetic iron loading on mitochondrial function and linked metabolic pathways, providing an explanation for fatigue in iron-overloaded hemochromatosis patients, and suggests iron reduction therapy for improvement of mitochondrial function.
Project description:An inhibitor of hepatic uroporphyrinogen decarboxylase (EC 4.1.1.37) was demonstrated in heat-treated extracts of livers from C57BL/10ScSn mice with iron overload after a single dose (100 mg/kg; 350 mumol/kg) of hexachlorobenzene (HCB). Inhibition was not due to accumulated uroporphyrin since this could be removed by a SEP-PAK C18 cartridge without affecting inhibitor activity. The presence of the inhibitor could be first demonstrated 2 weeks after mice received HCB and before major elevation of hepatic porphyrin levels. Maximum inhibitory potential was reached at about 8 weeks and was still detected 25 weeks after the chemical, thus paralleling the depression of enzyme activity reported previously [Smith, Francis, Kay, Greig & Stewart (1986) Biochem. J. 238, 871-878]. The inhibitor was not detected following treatment of mice with either iron or HCB alone or after the decarboxylase activity was destroyed in vitro by the combination of uroporphyrin and light. The formation of the inhibitor by inbred mouse strains nominally Ah-responsive (C57BL/6J, C57BL/10ScSn, BALB/c, C3H/HeJ, CBA/J and A/J) and Ah-nonresponsive (SWR, AKR, 129, SJL, LP and DBA/2) did not correlate fully with their reported Ah-phenotype. There was a correlation amongst the Ah-responsive strains only, with hepatic ethoxyphenoxazone de-ethylase activity induced in parallel experiments by treatment with beta-naphthoflavone. De-ethylase activity induced by HCB, however, was considerably less than that with beta-naphthoflavone, which has not been reported as porphyrogenic. Other polyhalogenated chemicals, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,2',3',4'-hexachlorobiphenyl and hexabromobenzene, also caused the formation of the inhibitor of uroporphyrinogen decarboxylase.
Project description:In human hemochromatosis, tissue toxicity is a function of tissue iron levels. Despite reports of skin toxicity in hemochromatosis, little is known about iron levels in skin of individuals with systemic iron overload. We measured skin iron and studied skin histology in three mouse models of systemic iron overload: mice with a deletion of the hemochromatosis (Hfe) gene, mice fed a high iron diet, and mice given parenteral injections of iron. In Hfe(-/-) mice, iron content in the epidermis and dermis was unexpectedly the same as in Hfe(+/+) mice, and there were no histological abnormalities detected after 30 wk. A high iron diet produced increased iron in the epidermis of both normal and Hfe(-/-) animals; a high diet increased iron in the dermis only in Hfe(-/-) mice. Increased skin iron was not associated with other histological changes, even after 19 wk. Parenteral administration of iron produced increased iron in the epidermis and dermis, and gave the skin a bronze hue. These results show that the amount and distribution of iron in the skin depends on the etiology of iron overload. It appears that neither Hfe deletion nor elevated skin iron alone can account for cutaneous manifestations reportedly seen in humans with hereditary hemochromatosis.