Project description:Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg), to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition.
Project description:Serotonin reuptake inhibitors (SRIs) are currently the main molecules prescribed to pregnant women that suffer from depression. Placental cells are exposed to SRIs via maternal blood, and we have previously shown that SRIs alter feto-placental steroidogenesis in an in vitro co-culture model. More specifically, serotonin (5-HT) regulates the estrogen biosynthetic enzyme aromatase (cytochrome P450 19; CYP19), which is disrupted by fluoxetine and its active metabolite norfluoxetine in BeWo choriocarcinoma cells. Based on molecular simulations, the present study illustrates that the SRIs fluoxetine, norfluoxetine, paroxetine, sertraline, citalopram and venlafaxine exhibit binding affinity for the active-site pocket of CYP19, suggesting potential competitive inhibition. Using BeWo cells and primary villous trophoblast cells isolated from normal term placentas, we compared the effects of the SRIs on CYP19 activity. We observed that paroxetine and sertraline induce aromatase activity in BeWo cells, while venlafaxine, fluoxetine, paroxetine and sertraline decrease aromatase activity in primary villous trophoblast. The effects of paroxetine and sertraline in primary villous trophoblasts were observed at the lower doses tested. We also showed that 5-HT and the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) induced CYP19 activity. An increase in phosphorylation of serine and tyrosine and a decrease in threonine phosphorylation of CYP19 was also associated with DOI treatment. Our results contribute to better understanding how 5-HT and SRIs interact with CYP19 and may affect estrogen production. Moreover, this study suggests that alteration of placental 5-HT levels due to depression and/or SRI treatment during pregnancy may be associated with disruption of placental estrogen production.
Project description:Background and Purpose: Sedation and somnolence remain serious adverse effects of the existing analgesics (e.g., pregabalin, duloxetine) for neuropathic pain. The available evidence indicates that serotonin (5-HT), noradrenaline (NE), and dopamine (DA) play important roles in modulating the descending inhibitory pain pathway and sleep-wake cycle. The aim of this work was to test the hypothesis that LPM580098, a novel triple reuptake inhibitor (TRI) of 5-HT, NE, and DA, has analgesic effect, and does not induce significant adverse effects associated with central inhibition, such as sedation and somnolence. Methods: The analgesic activity of LPM580098 was assessed on formalin test and spinal nerve ligation (SNL)-induced neuropathic pain model. Locomotor activity, pentobarbital sodium-induced sleeping and rota-rod tests were also conducted. In vitro binding and uptake assays, and Western blotting were performed to examine the potential mechanisms. Results: LPM580098 suppressed the nocifensive behaviors during phase II of the formalin test in mice. In SNL rats, LPM580098 (16 mg kg-1) inhibited mechanical allodynia, thermal hyperalgesia and hyperexcitation of wide-dynamic range (WDR) neurons, in which the effect of LPM580098 was similar to pregabalin (30 mg kg-1). However, pregabalin altered the spontaneous locomotion, affected pentobarbital sodium-induced sleep, and showed a trend to perform motor dysfunction, which were not induced by LPM580098. Mechanistically, LPM580098 inhibited the uptake of 5-HT, NE, and DA, improved pain-induced changes of the synaptic functional plasticity and structural plasticity possibly via downregulating the NR2B/CaMKIIα/GluR1 and Rac1/RhoA signaling pathways. Conclusion: Our results suggest that LPM580098, a novel TRI, is effective in attenuating neuropathic pain without producing unwanted sedation and somnolence associated with central nervous system (CNS) depressants.
Project description:Given the failure to develop disease-modifying therapies for Alzheimer's disease (AD), strategies aiming at preventing or delaying the onset of the disease are being prioritized. While the debate regarding whether depression is an etiological risk factor or a prodrome of AD rages on, a key determining factor may be the timing of depression onset in older adults. There is increasing evidence that untreated early-onset depression is a risk factor and that late-onset depression may be a catalyst of cognitive decline. Data from animal studies have shown a beneficial impact of selective serotonin reuptake inhibitors on pathophysiological biomarkers of AD including amyloid burden, tau deposits and neurogenesis. In humans, studies focusing on subjects with a prior history of depression also showed a delay in the onset of AD in those treated with most selective serotonin reuptake inhibitors. Paroxetine, which has strong anticholinergic properties, was associated with increased mortality and mixed effects on amyloid and tau deposits in mice, as well as increased odds of developing AD in humans. Although most of the data regarding selective serotonin reuptake inhibitors is promising, findings should be interpreted cautiously because of notable methodological heterogeneity between studies. There is thus a need to conduct large scale randomized controlled trials with long follow up periods to clarify the dose-effect relationship of specific serotonergic antidepressants on AD prevention.
Project description:The serotonin norepinephrine reuptake inhibitors are a family of antidepressants that inhibit the reuptake of both serotonin and norepinephrine. While these drugs are traditionally considered a group of inter-related antidepressants based upon reuptake inhibition, they generally display different chemical structures as well as different pharmacological properties. In this article, we discuss these and other differences among the serotonin norepinephrine reuptake inhibitors, including the year of approval by the United States Food and Drug Administration, generic availability, approved clinical indications, half-lives, metabolism and excretion, presence or not of active metabolites, dosing schedules, proportionate effects on serotonin and norepinephrine, and the timing of serotonin and norepinephrine reuptake (i.e., sequential or simultaneous). Again, while serotonin norepinephrine reuptake inhibitors are grouped as a family of antidepressants, they exhibit a surprising number of differences- differences that may ultimately relate to clinical nuances in patient care.
Project description:Abstract This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the benefits and harms of noradrenaline reuptake inhibitors (NRIs) compared with placebo or no treatment, or any active pharmacological control for treating attention deficit hyperactivity disorder (ADHD) in adults.
Project description:Selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) are reported to cause stress cardiomyopathy (SC). This study evaluated the association between SSRI/SNRI use and the occurrence of cardiomyopathy in the publicly available U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database. Disproportionate analysis and likelihood ratio tests were used to identify risk associated with SSRIs or SNRIs and the incidence of SC, using data from between from 2012 to 2022 acquired from the FAERS database. The study identified 132 individual case safety reports (ICSRs) of SC associated with SSRIs or SNRIs. Venlafaxine (48%) and fluoxetine (27%) were the most common antidepressants of the ICSRs. Approximately 80% of SC cases were reported in females, with individuals aged 45-65 years identified as a high-risk population. Both venlafaxine (ratio-scale information component [RSIC] 2.54, 95% CI 2.06-3.04) and fluoxetine (RSIC 3.20, 95% CI 2.31-4.47) were associated with SC, with likelihood ratio estimates of 3.55 (p = 0.02) for venlafaxine and 4.82 (p = 0.008) for fluoxetine. The median time to cardiomyopathy onset was 20 days, with hospitalization reported in 48.33% of patients. Venlafaxine and fluoxetine were associated with SC risk, particularly in middle-aged women. Caution should be exercised when using SSRIs or SNRIs combined with other serotonergic medications.
Project description:A new class of multitarget compounds was synthesized by linking a novel selective serotonin reuptake inhibitor (SSRI) to a PDE4 inhibitor. The new dual PDE4 inhibitor/SSRI showed antidepressant-like activity in the forced swim test in mice The SSRIs 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-ethyl]-tetrahydro-furan-2-yl}-ethylamine (14) and 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-propyl]-tetrahydro-furan-2-yl}-ethylamine (15) were both individually linked to the PDE4 inhibitor 4-(3,4-dimethoxy-phenyl)-4a,5,8,8a-tetrahydro-2H-phthalazin-1-one (19), via a five-carbon chain. The dual PDE4 inhibitor/SSRI 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-ethyl]-tetrahydro-furan-2-yl}-ethylamine)-pentyl]-4,5,8,8a-tetrahydro-2H-phthalazin-1-one (21) showed potent and selective serotonin reuptake inhibition (IC(50) value of 127 nM). The dual PDE4 inhibitor/SSRI 21 also inhibited PDE4D3 with a K(i) value of 2.0 nM. The dual PDE4 inhibitor/SSRI was significantly more effective than the individual SSRI alone or fluoxetine in the forced swim test at standard doses. On a molar basis, the antidepressant-like effect of the dual PDE4 inhibitor/SSRI 21 showed a 129-fold increase in in vivo efficacy compared to fluoxetine.