Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3- fluctuations.
Ontology highlight
ABSTRACT: The CO2/HCO3- buffer minimizes pH changes in response to acid-base loads, HCO3- provides substrate for Na+,HCO3--cotransporters and Cl-/HCO3--exchangers, and H+ and HCO3- modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3- buffer. Switching from CO2/HCO3--free to CO2/HCO3--containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3- uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na+,HCO3--cotransport and Na+/H+-exchange activity after NH4+-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3--free conditions but absent when the buffer capacity and apparent H+ mobility increase in the presence of CO2/HCO3- even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3- minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid–base transport across cell membranes during recovery from intracellular acidification.
SUBMITTER: Rasmussen JK
PROVIDER: S-EPMC5851140 | biostudies-literature | 2018 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA