Unknown

Dataset Information

0

Vitamin A bio-modulates apoptosis via the mitochondrial pathway after hypoxic-ischemic brain damage.


ABSTRACT: Our previous studies demonstrated that vitamin A deficiency (VAD) can impair the postnatal cognitive function of rats by damaging the hippocampus. The present study examined the effects of retinoic acid (RA) on apoptosis induced by hypoxic-ischemic damage in vivo and in vitro, and investigated the possible signaling pathway involved in the neuroprotective anti-apoptotic effects of RA. Flow cytometry, immunofluorescence staining and behavioral tests were used to evaluate the neuroprotective and anti-apoptotic effects of RA. The protein and mRNA levels of RAR?, PI3K, Akt, Bad, caspase-3, caspase-8, Bcl-2, Bax, and Bid were measured with western blotting and real-time PCR, respectively. We found impairments in learning and spatial memory in VAD group compared with vitamin A normal (VAN) and vitamin A supplemented (VAS) group. Additionally, we showed that hippocampal apoptosis was weaker in the VAN group than that in VAD group. Relative to the VAD group, the VAN group also had increased mRNA and protein levels of RAR? and PI3K, and upregulated phosphorylated Akt/Bad levels in vivo. In vitro, excessively low or high RA signaling promoted apoptosis. Furthermore, the effects on apoptosis involved the mitochondrial membrane potential (MMP). These data support the idea that sustained VAD following hypoxic-ischemic brain damage (HIBD) inhibits RAR?, which downregulates the PI3K/Akt/Bad and Bcl-2/Bax pathways and upregulates the caspase-8/Bid pathway to influence the MMP, ultimately producing deficits in learning and spatial memory in adolescence. This suggests that clinical interventions for HIBD should include suitable doses of VA.

SUBMITTER: Jiang W 

PROVIDER: S-EPMC5851324 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vitamin A bio-modulates apoptosis via the mitochondrial pathway after hypoxic-ischemic brain damage.

Jiang Wei W   Guo Min M   Gong Min M   Chen Li L   Bi Yang Y   Zhang Yun Y   Shi Yuan Y   Qu Ping P   Liu Youxue Y   Chen Jie J   Li Tingyu T  

Molecular brain 20180313 1


Our previous studies demonstrated that vitamin A deficiency (VAD) can impair the postnatal cognitive function of rats by damaging the hippocampus. The present study examined the effects of retinoic acid (RA) on apoptosis induced by hypoxic-ischemic damage in vivo and in vitro, and investigated the possible signaling pathway involved in the neuroprotective anti-apoptotic effects of RA. Flow cytometry, immunofluorescence staining and behavioral tests were used to evaluate the neuroprotective and a  ...[more]

Similar Datasets

| S-EPMC8483388 | biostudies-literature
| S-EPMC6527272 | biostudies-literature
| S-EPMC10031108 | biostudies-literature
| S-EPMC7047798 | biostudies-literature
| S-EPMC8590301 | biostudies-literature
| S-EPMC7296108 | biostudies-literature
| S-EPMC9947717 | biostudies-literature
2024-05-07 | GSE266886 | GEO
| S-EPMC9590416 | biostudies-literature
| S-EPMC10822867 | biostudies-literature