Unknown

Dataset Information

0

Enhanced Thermostability of Glucose Oxidase through Computer-Aided Molecular Design.


ABSTRACT: Glucose oxidase (GOD, EC.1.1.3.4) specifically catalyzes the reaction of ?-d-glucose to gluconic acid and hydrogen peroxide in the presence of oxygen, which has become widely used in the food industry, gluconic acid production and the feed industry. However, the poor thermostability of the current commercial GOD is a key limiting factor preventing its widespread application. In the present study, amino acids closely related to the thermostability of glucose oxidase from Penicillium notatum were predicted with a computer-aided molecular simulation analysis, and mutant libraries were established following a saturation mutagenesis strategy. Two mutants with significantly improved thermostabilities, S100A and D408W, were subsequently obtained. Their protein denaturing temperatures were enhanced by about 4.4 °C and 1.2 °C, respectively, compared with the wild-type enzyme. Treated at 55 °C for 3 h, the residual activities of the mutants were greater than 72%, while that of the wild-type enzyme was only 20%. The half-lives of S100A and D408W were 5.13- and 4.41-fold greater, respectively, than that of the wild-type enzyme at the same temperature. This work provides novel and efficient approaches for enhancing the thermostability of GOD by reducing the protein free unfolding energy or increasing the interaction of amino acids with the coenzyme.

SUBMITTER: Ning X 

PROVIDER: S-EPMC5855647 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced Thermostability of Glucose Oxidase through Computer-Aided Molecular Design.

Ning Xiaoyan X   Zhang Yanli Y   Yuan Tiantian T   Li Qingbin Q   Tian Jian J   Guan Weishi W   Liu Bo B   Zhang Wei W   Xu Xinxin X   Zhang Yuhong Y  

International journal of molecular sciences 20180131 2


Glucose oxidase (GOD, EC.1.1.3.4) specifically catalyzes the reaction of β-d-glucose to gluconic acid and hydrogen peroxide in the presence of oxygen, which has become widely used in the food industry, gluconic acid production and the feed industry. However, the poor thermostability of the current commercial GOD is a key limiting factor preventing its widespread application. In the present study, amino acids closely related to the thermostability of glucose oxidase from <i>Penicillium notatum</i  ...[more]

Similar Datasets

| S-EPMC2238713 | biostudies-literature
| S-EPMC7294690 | biostudies-literature
| S-EPMC3449398 | biostudies-literature
| S-EPMC10453301 | biostudies-literature
| S-EPMC7869511 | biostudies-literature
| S-EPMC6211276 | biostudies-literature
| S-EPMC5857607 | biostudies-literature
| S-EPMC9838881 | biostudies-literature
| S-EPMC6217974 | biostudies-literature
| S-EPMC9490058 | biostudies-literature