Occurrence of Hepatozoon canis (Adeleorina: Hepatozoidae) and Anaplasma spp. (Rickettsiales: Anaplasmataceae) in black-backed jackals (Canis mesomelas) in South Africa.
Ontology highlight
ABSTRACT: BACKGROUND:Domestic dogs are not native to sub-Saharan Africa, which may account for their susceptibility to Babesia rossi, of which endemic black-backed jackals (Canis mesomelas) are natural reservoirs. There is virtually no information on the occurrence of potentially pathogenic haemogregarines (e.g. Hepatozoon canis) or even rickettsial bacteria (e.g. Ehrlichia spp. and Anaplasma spp.) in indigenous canids in sub-Saharan Africa. Such organisms could pose a risk to domestic dogs, as well as to populations of endangered indigenous canid species. RESULTS:Genomic DNA extracted from blood samples taken from 126 free-ranging and 16 captive black-backed jackals was subjected to reverse line blot (RLB) hybridization assay; 82 (57.8%) specimens reacted only with the Ehrlichia/Anaplasma genera-specific probe. Full-length bacterial 16S rRNA gene of five of these specimens was cloned and the recombinants sequenced. The ten 16S rDNA sequences obtained were most closely related, with approximately 99% identity, to Anaplasma sp. South African Dog, various uncultured Anaplasma spp., as well as various Anaplasma phagocytophilum genotypes. Ninety-one specimens were screened for haemogregarines through PCR amplification using the 18S rRNA gene; 20 (21.9%) specimens reacted positively, of which 14 (15.4%) were confirmed positive for Hepatozoon genotypes from within H. canis. Two (2.2%) specimens were found positive for two different Hepatozoon genotypes. CONCLUSIONS:Sequence analyses confirmed the presence of 16S rDNA sequences closely related to A. phagocytophilum and Anaplasma sp. South African Dog as well as two H. canis genotypes in both free-ranging and captive black-backed jackals. Distinguishing between closely related lineages may provide insight into differences in pathogenicity and virulence of various Anaplasma and H. canis genotypes. By building up a more comprehensive understanding of the range and diversity of the bacteria and eukaryotic organisms (piroplasms and haemogregarines) in the blood of indigenous canids, we may gain insight to such infections in these often-endangered species and the potential for horizontal transmission to and from domestic dogs via ticks where favourable conditions exist.
SUBMITTER: Penzhorn BL
PROVIDER: S-EPMC5859442 | biostudies-literature | 2018 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA