Ontology highlight
ABSTRACT: Summary
Computational characterization of differential kinase activity from phosphoproteomics datasets is critical for correctly inferring cellular circuitry and how signaling cascades are altered in drug treatment and/or disease. Kinase-Substrate Enrichment Analysis (KSEA) offers a powerful approach to estimating changes in a kinase's activity based on the collective phosphorylation changes of its identified substrates. However, KSEA has been limited to programmers who are able to implement the algorithms. Thus, to make it accessible to the larger scientific community, we present a web-based application of this method: the KSEA App. Overall, we expect that this tool will offer a quick and user-friendly way of generating kinase activity estimates from high-throughput phosphoproteomics datasets.Availability and implementation
the KSEA App is a free online tool: casecpb.shinyapps.io/ksea/. The source code is on GitHub: github.com/casecpb/KSEA/. The application is also available as the R package "KSEAapp" on CRAN: CRAN.R-project.org/package=KSEAapp/.Contact
mark.chance@case.edu.Supplementary information
Supplementary data are available at Bioinformatics online.
SUBMITTER: Wiredja DD
PROVIDER: S-EPMC5860163 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
Wiredja Danica D DD Koyutürk Mehmet M Chance Mark R MR
Bioinformatics (Oxford, England) 20170626 21
<h4>Summary</h4>Computational characterization of differential kinase activity from phosphoproteomics datasets is critical for correctly inferring cellular circuitry and how signaling cascades are altered in drug treatment and/or disease. Kinase-Substrate Enrichment Analysis (KSEA) offers a powerful approach to estimating changes in a kinase's activity based on the collective phosphorylation changes of its identified substrates. However, KSEA has been limited to programmers who are able to imple ...[more]