ABSTRACT: As an individual moves through its life cycle, it passes through a series of states (age classes, size classes, reproductive states, spatial locations, health statuses, etc.) before its eventual death. The occupancy time in a state is the time spent in that state over the individual's life. Depending on the life cycle description, the occupancy times describe different demographic variables, for example, lifetime breeding success, lifetime habitat utilisation, or healthy longevity. Models based on absorbing Markov chains provide a powerful framework for the analysis of occupancy times. Current theory, however, can completely analyse only the occupancy of single states, although the occupancy time in a set of states is often desired. For example, a range of sizes in a size-classified model, an age class in an age×stage model, and a group of locations in a spatial stage model are all sets of states. We present a new mathematical approach to absorbing Markov chains that extends the analysis of life histories by providing a comprehensive theory for the occupancy of arbitrary sets of states, and for other demographic variables related to these sets (e.g., reaching time, return time). We apply this approach to a matrix population model of the Southern Fulmar (Fulmarus glacialoides). The analysis of this model provides interesting insight into the lifetime number of breeding attempts of this species. Our new approach to absorbing Markov chains, and its implementation in matrix oriented software, makes the analysis of occupancy times more accessible to population ecologists, and directly applicable to any matrix population models.