Unknown

Dataset Information

0

High-Resolution Bubble Printing of Quantum Dots.


ABSTRACT: Semiconductor quantum dots (QDs) feature excellent properties, such as high quantum efficiency, tunable emission frequency, and good fluorescence stability. Incorporation of QDs into new devices relies upon high-resolution and high-throughput patterning techniques. Herein, we report a new printing technique known as bubble printing (BP), which exploits a light-generated microbubble at the interface of colloidal QD solution and a substrate to directly write QDs into arbitrary patterns. With the uniform plasmonic hot spot distribution for high bubble stability and the optimum light-scanning parameters, we have achieved full-color QD printing with submicron resolution (650 nm), high throughput (scanning rate of ?10-2 m/s), and high adhesion of the QDs to the substrates. The printing parameters can be optimized to further control the fluorescence properties of the patterned QDs, such as emission wavelength and lifetime. The patterning of QDs on flexible substrates further demonstrates the wide applicability of this new technique. Thus, BP technique addresses the barrier of achieving a widely applicable, high-throughput and user-friendly patterning technique in the submicrometer regime, along with simultaneous fluorescence modification capability.

SUBMITTER: Bangalore Rajeeva B 

PROVIDER: S-EPMC5866051 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-Resolution Bubble Printing of Quantum Dots.

Bangalore Rajeeva Bharath B   Lin Linhan L   Perillo Evan P EP   Peng Xiaolei X   Yu William W WW   Dunn Andrew K AK   Zheng Yuebing Y  

ACS applied materials & interfaces 20170508 19


Semiconductor quantum dots (QDs) feature excellent properties, such as high quantum efficiency, tunable emission frequency, and good fluorescence stability. Incorporation of QDs into new devices relies upon high-resolution and high-throughput patterning techniques. Herein, we report a new printing technique known as bubble printing (BP), which exploits a light-generated microbubble at the interface of colloidal QD solution and a substrate to directly write QDs into arbitrary patterns. With the u  ...[more]

Similar Datasets

| S-EPMC5870898 | biostudies-literature
| S-EPMC9926896 | biostudies-literature
| S-EPMC9064422 | biostudies-literature
2021-01-30 | GSE165805 | GEO
| S-EPMC6656777 | biostudies-literature
| S-EPMC3874875 | biostudies-literature
| S-EPMC7280294 | biostudies-literature
| S-EPMC4479007 | biostudies-other
| S-EPMC11311541 | biostudies-literature
| S-EPMC7517116 | biostudies-literature