Unknown

Dataset Information

0

DeBGR: an efficient and near-exact representation of the weighted de Bruijn graph.


ABSTRACT: Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k -mer occurs, which is key in transcriptome assemblers.We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18-28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems.https://github.com/splatlab/debgr .rob.patro@cs.stonybrook.edu.Supplementary data are available at Bioinformatics online.

SUBMITTER: Pandey P 

PROVIDER: S-EPMC5870571 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

deBGR: an efficient and near-exact representation of the weighted de Bruijn graph.

Pandey Prashant P   Bender Michael A MA   Johnson Rob R   Patro Rob R  

Bioinformatics (Oxford, England) 20170701 14


<h4>Motivation</h4>Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using 'long read' technologies like those offered by PacBio or Oxford Nanopore), efficient k -mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the  ...[more]

Similar Datasets

| S-EPMC3848682 | biostudies-literature
| S-EPMC5591975 | biostudies-literature
| S-EPMC8025321 | biostudies-literature
| S-EPMC8147420 | biostudies-literature
| S-EPMC6022659 | biostudies-literature
| S-EPMC8521641 | biostudies-literature
| S-EPMC3517413 | biostudies-literature
| S-EPMC4896364 | biostudies-literature
| S-EPMC10605969 | biostudies-literature
| S-EPMC8326735 | biostudies-literature