Project description:Alexander disease (AxD) is a rare, autosomal dominant neurological disorder. Three clinical subtypes are distinguished based on age at onset: infantile (0-2 years), juvenile (2-13 years), and adult (>13 years). The three forms differ in symptoms and prognosis. Rapid neurological decline with a fatal course characterizes the early-onset forms, while symptoms are milder and survival is longer in the adult forms. Currently, the sole known cause of AxD is mutations in the GFAP gene, which encodes a type III intermediate filament protein that is predominantly expressed in astrocytes. A wide spectrum of GFAP mutations comprising point mutations, small insertions, and deletions is associated with the disease. The genotype-phenotype correlation remains unclear. The considerable heterogeneity in severity of disease among individuals carrying identical mutations suggests that other genetic or environmental factors probably modify age at onset or progression of AxD. Describing new cases is therefore important for establishing reliable genotype-phenotype correlations and revealing environmental factors able to modify age at onset or progression of AxD. We report the case of a 54-year-old Caucasian woman, previously diagnosed with ovarian cancer and treated with surgery and chemotherapy, who developed dysarthria, ataxia, and spastic tetraparesis involving mainly the left side. Cerebral and spinal magnetic resonance imaging (MRI) revealed a peculiar tadpole-like atrophy of the brainstem. Genetic analysis of the GFAP gene detected a heterozygous mutation in exon 1 (c.219G>C), resulting in an amino acid exchange from methionine to isoleucine at codon 73 (p.M73I). The expression of this mutant in vitro affected the formation of the intermediate filament network. Thus, we have identified a new GFAP mutation in a patient with an adult form of AxD.
Project description:Alexander disease (AxD) is a rare neurological disease, especially in adults. It shows variable clinical and radiological features.We diagnosed a female with AxD presenting with paroxysmal numbness of the limbs at the onset age of 28-year-old, progressing gradually to spastic paraparesis at age 30. One year later, she had ataxia, bulbar paralysis, bowel and bladder urgency. Her mother had a similar neurological symptoms and died within 2 years after onset (at the age of 47), and her maternal aunt also had similar but mild symptoms at the onset age of 54-year-old. Her brain magnetic resonance imaging (MRI) showed abnormal signals in periventricular white matter with severe atrophy in the medulla oblongata and thoracic spinal cord, and mild atrophy in cervical spinal cord, which is unusual in the adult form of AxD. She and her daughter's glial fibrillary acidic protein (GFAP) gene analysis revealed the same heterozygous missense mutation, c.1246C?>?T, p.R416W, despite of no neurological symptoms in her daughter.Our case report enriches the understanding of the familial adult AxD. Genetic analysis is necessary when patients have the above mentioned symptoms and signs, MRI findings, especially with family history.
Project description:ObjectiveTo characterize Alexander disease (AxD) phenotypes and determine correlations with age at onset (AAO) and genetic mutation. AxD is an astrogliopathy usually characterized on MRI by leukodystrophy and caused by glial fibrillary acidic protein (GFAP) mutations.MethodsWe present 30 new cases of AxD and reviewed 185 previously reported cases. We conducted Wilcoxon rank sum tests to identify variables scaling with AAO, survival analysis to identify predictors of mortality, and ?(2) tests to assess the effects of common GFAP mutations. Finally, we performed latent class analysis (LCA) to statistically define AxD subtypes.ResultsLCA identified 2 classes of AxD. Type I is characterized by early onset, seizures, macrocephaly, motor delay, encephalopathy, failure to thrive, paroxysmal deterioration, and typical MRI features. Type II is characterized by later onset, autonomic dysfunction, ocular movement abnormalities, bulbar symptoms, and atypical MRI features. Survival analysis predicted a nearly 2-fold increase in mortality among patients with type I AxD relative to those with type II. R79 and R239 GFAP mutations were most common (16.6% and 20.3% of all cases, respectively). These common mutations predicted distinct clinical outcomes, with R239 predicting the most aggressive course.ConclusionsAAO and the GFAP mutation site are important clinical predictors in AxD, with clear correlations to defined patterns of phenotypic expression. We propose revised AxD subtypes, type I and type II, based on analysis of statistically defined patient groups.
Project description:ObjectiveTo describe the imaging and clinical features in type II (late-onset) Alexander disease (AxD).MethodsWe retrospectively identified all cases of type II AxD evaluated at Mayo Clinic, Rochester from January 1996 to February 2012. Clinical and neuroimaging data abstracted from the record included age at onset of symptoms, age at diagnosis, first symptom, neurologic symptoms, physical/neurologic findings on examination, genetic testing and/or biopsy (if performed), and MRI findings.ResultsThirteen patients with type II AxD were identified. Median age at onset was 38 years (range: 12-63). Five patients were female. Eleven of 13 patients had atrophy of the medulla while all 13 had medullary T2 hyperintensity. In 7 patients, these brainstem regions showed patchy enhancement. Five subjects had T2 signal change in the middle cerebellar peduncle, with associated contrast enhancement in 4 subjects. Eleven of 12 patients with T2 fluid-attenuated inversion recovery (FLAIR) imaging had pial FLAIR signal change in the medulla. Nine of 12 patients with spinal cord imaging had cord atrophy, and 3 of 9 of these evaluated with contrast had cervical cord enhancement.ConclusionsOur study confirms prior reports of atrophy and signal change of the medulla and spinal cord in late-onset AxD. We expand on previous imaging studies by identifying middle cerebellar peduncle and pial FLAIR signal changes as important diagnostic clues. Variable patchy enhancement may occur in regions of T2 hyperintensity, leading to diagnostic uncertainty. In addition, we demonstrate that previously emphasized clinical features such as palatal tremor may not be common. We affirm that age at onset predicts clinical phenotype and imaging findings.
Project description:BackgroundKrabbe disease (KD) is a rare autosomal recessive lysosomal storage disorder caused by deficiency of the galactocerebrosidase (GALC) enzyme. The adult-onset KD is infrequent, and often presenting with slowly progressive spastic paraplegia. Herein, we describe a two-generation concomitant Chinese pedigree of adult-onset KD in which the proband presented with acute hemiplegia at onset.MethodsWe collected the clinical and neuroimaging data of the pedigree. GALC enzyme activity detection and gene analysis were performed to confirm the diagnosis. Moreover, we reviewed all studies available on PubMed to understand the correlationship between phenotype and genotype of the identified mutations.ResultsThe proband presented with sudden-onset weakness of left limbs with selective pyramidal tract involvement on diffusion-weighted imaging (DWI) of brain MRI. The GALC enzyme activity of him was low, and the GALC gene analysis revealed compound heterozygous pathogenic mutations of c.1901T>C and c.1901delT. More interestingly, the homozygous c.1901T>C mutations were found in the proband's asymptomatic father and two paternal uncles. Meanwhile, the literature review revealed the c.1901T>C mutation was only found in the late-onset form of KD.ConclusionsThese observations, combined with previous reports, indicate that KD should be considered in the adult patients presenting selective pyramidal tract impairment even with sudden onset.
Project description:Alexander disease (AD) is an autosomal dominant leukodystrophy which predominantly affects infants and children. The infantile form comprises the most common form of AD. It presents before two years of age and characterized by macrocephaly, psychomotor regression, spasticity, pyramidal sign, ataxia and seizures. The diagnosis is based on magnetic resonance imaging (MRI) findings and confirmed by Glial fibrillary acidic protein (GFAP) gene molecular testing. We report an Indian case with normal head circumference.
Project description:We studied a family including two half-siblings, sharing the same mother, affected by slowly progressive, adult-onset neurological syndromes. In spite of the diversity of the clinical features, characterized by a mild movement disorder with cognitive impairment in the elder patient, and severe motor-neuron disease (MND) in her half-brother, the brain Magnetic Resonance Imaging (MRI) features were compatible with adult-onset Alexander's disease (AOAD), suggesting different expression of the same, genetically determined, condition.Since mutations in the alpha isoform of glial fibrillary acidic protein, GFAP-?, the only cause so far known of AOAD, were excluded, we applied exome Next Generation Sequencing (NGS) to identify gene variants, which were then functionally validated by molecular characterization of recombinant and patient-derived cells.Exome-NGS revealed a mutation in a previously neglected GFAP isoform, GFAP-?, which disrupts the GFAP-associated filamentous cytoskeletal meshwork of astrocytoma cells. To shed light on the different clinical features in the two patients, we sought for variants in other genes. The male patient had a mutation, absent in his half-sister, in X-linked histone deacetylase 6, a candidate MND susceptibility gene.Exome-NGS is an unbiased approach that not only helps identify new disease genes, but may also contribute to elucidate phenotypic expression.
Project description:We present here a 25-year-old woman with genetically confirmed (p.R276L mutation in the GFAP gene) juvenile-onset AxD. Episodic vomiting appeared at age nine, causing anorexia and insufficient growth. Brain MRI at age 11 showed a small nodular lesion with contrast enhancement in the left dorsal portion of the cervicomedullary junction. Her episodic vomiting improved spontaneously at age 13, and she became neurologically asymptomatic. The enhancement of the lesion disappeared simultaneously, although the plaque remained. Longitudinal MRI observations, however, revealed insidiously progressive cervicomedullary atrophy without a signal change. This case broadens our knowledge of AxD: (1) molecular analysis of the GFAP gene is warranted in patients with MRI evidence of tumor-like lesions in the brainstem, particularly if they present with isolated episodic vomiting and/or anorexia; (2) the disease can be self-remitting for at least 12 years; (3) cervicomedullary atrophy, characteristic of the adult form, can be insidiously progressive without a signal change before the clinical symptoms appear.
Project description:BackgroundAlexander disease (ALX) is a rare neurological disorder characterized by white matter degeneration and cytoplasmic inclusions in astrocytes called Rosenthal fibers, labeled by antibodies against glial fibrillary acidic protein (GFAP). Three subtypes are distinguished according to age at onset: infantile (under age 2), juvenile (age 2 to 12) and adult (over age 12). Following the identification of heterozygous mutations in GFAP that cause this disease, cases of adult-onset ALX have been increasingly reported.Case presentationWe present a 60-year-old Japanese man with an unremarkable past and no family history of ALX. After head trauma in a traffic accident at the age of 46, his character changed, and dementia and dysarthria developed, but he remained independent. Spastic paresis and dysphagia were observed at age 57 and 59, respectively, and worsened progressively. Neurological examination at the age of 60 revealed dementia, pseudobulbar palsy, left-side predominant spastic tetraparesis, axial rigidity, bradykinesia and gaze-evoked nystagmus. Brain MRI showed tadpole-like atrophy of the brainstem, caused by marked atrophy of the medulla oblongata, cervical spinal cord and midbrain tegmentum, with an intact pontine base. Analysis of the GFAP gene revealed a heterozygous missense mutation, c.827G>T, p.R276L, which was already shown to be pathogenic in a case of pathologically proven hereditary adult-onset ALX.ConclusionThe typical tadpole-like appearance of the brainstem is strongly suggestive of adult-onset ALX, and should lead to a genetic investigation of the GFAP gene. The unusual feature of this patient is the symmetrical involvement of the basal ganglia, which is rarely observed in the adult form of the disease. More patients must be examined to confirm, clinically and neuroradiologically, extrapyramidal involvement of the basal ganglia in adult-onset ALX.
Project description:Cystic fibrosis (CF) liver disease (CFLD), a leading cause of death in CF, is mostly described in pediatric populations. Adult-onset CFLD lacks sufficient characterization and diagnostic tools. A cohort of CF patients without CFLD during childhood were followed for up to 38 years with serologic testing, imaging, and noninvasive fibrosis markers. Historical CFLD diagnostic criteria were compared with newly proposed CFLD criteria. Thirty-six CF patients were followed for a median of 24.5 years (interquartile range 15.6-32.9). By the last follow-up, 11 (31%) had died. With conventional criteria, 8 (22%) patients had CFLD; and by the new criteria, 17 (47%) had CFLD at a median age of 36.6 years (interquartile range 26.5-43.2). By the new criteria, those with CFLD had higher median alanine aminotransferase (42 versus 27, P = 0.005), aspartate aminotransferase (AST; 26 versus 21, P = 0.01), direct bilirubin (0.13 versus 0.1, P = 0.01), prothrombin time (14.4 versus 12.4, P = 0.002), and AST-to-platelet ratio index (0.31 versus 0.23, P = 0.003) over the last 2 years of follow-up. Subjects with a FibroScan >6.8 kPa had higher alanine aminotransferase (42 versus 28U/L, P = 0.02), AST (35 versus 25U/L, P = 0.02), AST-to-platelet ratio index (0.77 versus 0.25, P = 0.0004), and Fibrosis-4 index (2.14 versus 0.74, P = 0.0003) and lower platelet counts (205 versus 293, P = 0.02). One CFLD patient had nodular regenerative hyperplasia. Longitudinally, mean platelet counts significantly declined in the CFLD group (from 310 to 230 U/L, P = 0.0005). Deceased CFLD patients had lower platelet counts than those alive with CFLD (143 versus 258 U/L, P = 0.004) or those deceased with no CFLD (143 versus 327U/L, P = 0.006).Adult-onset CFLD may be more prevalent than previously described, which suggests a later wave of CFLD that impacts morbidity; routine liver tests, radiologic imaging, noninvasive fibrosis markers, and FibroScan can be used algorithmically to identify adult CFLD; and further evaluation in other CF cohorts should be performed for validation. (Hepatology 2017;66:591-601).