Project description:PurposeTo describe clinical and electrographic characteristics of seizures LGI1-antibody encephalitis, and their correlations with two-year outcomes.MethodsVideo-electroencephalography recordings were performed on a cohort of 16 consecutive patients with LGI1-antibodies from two UK neuroscience-centers over five-years.ResultsFrom 14 of 16 patients (13 males; age-range 53-92years), 86 faciobrachial dystonic seizures were recorded at a median frequency of 0.4 per hour (range 0.1-9.8), and ictal EEG changes accompanied 5/86 events. In addition, 11/16 patients showed 53 other seizures - subclinical (n=18), motor (n=16), or sensory (n=19) - at a median of 0.1 per hour (range 0.1-2) associated with temporal and frontal discharges. The sensory events were most commonly thermal sensations or body-shuddering, and the motor events were frequently automatisms or vocalisations. Furthermore, multifocal interictal epileptiform discharges, from temporal, frontal and parietal regions, and interictal slow-wave activity were observed in 25% and 69% of patients, respectively. Higher observed seizure frequency correlated with poorer functional recovery at two-years (p=0.001).ConclusionsMultiple frequent seizure semiologies, in addition to numerous subclinical seizures and interictal epileptiform discharges, are hallmarks of LGI1-antibody encephalitis. High overall seizure frequency may predict more limited long-term recovery. These observations should encourage closer monitoring and proactive treatment of seizure activity in these patients.
Project description:BackgroundWhile brain asymmetry has been a fascinating issue in neuroscience, the critical mechanism remains to be elucidated. Based on some index cases with asymmetric 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) uptake in leucine-rich glioma-inactivated 1 (LGI1)-antibody encephalitis, we hypothesized LGI1 expression could be asymmetrically distributed in the human brain.MethodsWe enrolled 13 patients who were diagnosed with LGI1-antibody encephalitis between June 2012 and January 2018 at Seoul National University Hospital. Their pretreatment 18F-FDG-PET images were analyzed to find asymmetry between the left and right hemispheres. Guided by these observations, expression of LGI1 in the human hippocampus and the globus pallidus of both cerebral hemispheres was studied in nine post-mortem human brains.ResultsEleven of the 13 LGI1-antibody encephalitis patients (84.6%) showed asymmetrical FDG high uptake in the hippocampus: nine (81.8%) on the left hippocampus and two (18.2%) on the right. In the basal ganglia, seven patients (53.8%) showed asymmetry: four (57.1%) on the left and three (42.9%) on the right. The asymmetry was not evident in the laterality of faciobrachial dystonic seizures, brain MRI, and EEG. When the expression of LGI1 protein was analyzed in nine post-mortem human brains by western blotting, LGI1 expression was higher on eight left globus pallidus samples (88.89%, P = 0.019) and on four left hippocampal samples (44.44%, P = 0.652), compared to their right hemisphere samples.ConclusionsImaging parameters from patients with LGI1-antibody encephalitis and studies of LGI1 protein expression suggest that LGI1 is asymmetrically distributed in the human brain. These observations have implications for our understanding of human brain development.
Project description:ObjectiveThis single-center study was conducted in a cohort of patients with anti-LGI1 encephalitis to investigate the factors related to their functional recovery.MethodsWe retrospectively collected the clinical information of patients admitted to Xuanwu Hospital from January 2014 until December 2019, and followed up for at least 12 months.ResultsA total of 67 patients were included, and 57 completed the 12-month follow-up. Most of the patients (55/57, 96.5%) achieved functional improvement after immunotherapy, and 26 (45.6%) became symptom-free. Compared to patients with complete recovery, patients with partial or no recovery had significantly higher incidences of consciousness disorders (25.8% vs. 0%, P<0.05) and positive LGI1 antibodies in cerebrospinal fluid (CSF) (71.0% vs. 46.2%, P<0.05). These patients also had a lower Barthel Index both upon admission and at discharge, as well as a higher incidence of relapse (25.8% vs. 3.8%; P<0.05 each). Univariate logistic regression showed that positive LGI1 antibodies in CSF and relapse were associated with incomplete recovery at 1-year follow-up (both P<0.05), but only relapse remained statistically significant after multivariate logistic regression (P=0.034).ConclusionPatients with LGI1 antibodies in CSF and those who relapsed were more likely to experience worse outcome. Early recognition of these patients, combined with more aggressive immunotherapy may result in better recovery.
Project description:Two women in their 60's are presented to us with sudden falls of acute onset. Prolonged observation revealed a gradually evolving syndrome of paroxysmal right sided faciobrachial dystonic (FBD) posturing lasting seconds. Both patients went on to develop hyponatremia, following which the episodes worsened and appeared on both sides. In both cases, prolonged electroencephalography monitoring and magnetic resonance imaging brain were normal and the response to conventional anticonvulsants was poor. One patient improved spontaneously over 6 months. The 2(nd) patient developed an amnestic syndrome and was started on intravenous methylprednisolone with which her movement disorder abated. Her amnestic syndrome improved and she was discharged on oral steroids. Both patients tested positive for leucine-rich glioma inactivated 1 (LGi1) antibodies. We present the first case reports of FBD episodes and drop attacks owing to LGi1 encephalitis from India and review the relevant literature pertinent to the subject.
Project description:More than 30 mutations in LGI1, a secreted neuronal protein, have been reported with autosomal dominant lateral temporal lobe epilepsy (ADLTE). Although LGI1 haploinsufficiency is thought to cause ADLTE, the underlying molecular mechanism that results in abnormal brain excitability remains mysterious. Here, we focused on a mode of action of LGI1 autoantibodies associated with limbic encephalitis (LE), which is one of acquired epileptic disorders characterized by subacute onset of amnesia and seizures. We comprehensively screened human sera from patients with immune-mediated neurological disorders for LGI1 autoantibodies, which also uncovered novel autoantibodies against six cell surface antigens including DCC, DPP10, and ADAM23. Our developed ELISA arrays revealed a specific role for LGI1 antibodies in LE and concomitant involvement of multiple antibodies, including LGI1 antibodies in neuromyotonia, a peripheral nerve disorder. LGI1 antibodies associated with LE specifically inhibited the ligand-receptor interaction between LGI1 and ADAM22/23 by targeting the EPTP repeat domain of LGI1 and reversibly reduced synaptic AMPA receptor clusters in rat hippocampal neurons. Furthermore, we found that disruption of LGI1-ADAM22 interaction by soluble extracellular domain of ADAM22 was sufficient to reduce synaptic AMPA receptors in rat hippocampal neurons and that levels of AMPA receptor were greatly reduced in the hippocampal dentate gyrus in the epileptic LGI1 knock-out mouse. Therefore, either genetic or acquired loss of the LGI1-ADAM22 interaction reduces the AMPA receptor function, causing epileptic disorders. These results suggest that by finely regulating the synaptic AMPA receptors, the LGI1-ADAM22 interaction maintains physiological brain excitability throughout life.
Project description:Background: This study aimed to analyze the clinical characteristics of anti-leucine-rich glioma-inactivated protein 1 (LGI1) encephalitis patients and investigate prognostic factors by using a large-sample and long-term follow-up cohort. Methods: The clinical data of 45 patients (29 males; mean age, 57.0 years) from May 2014 to August 2019 were collected. All patients were followed up by face-to-face interviews in the third month after discharge and then by telephone and/or face-to-face interviews every 6 months until November 2020. We evaluated each patient's response to the initial treatments at the first interview and divided them into "responders" and "nonresponders." Relapses were recorded. At the end of follow-up, each patient was evaluated and reclassified into "complete recovery" or "unhealed" groups. Intergroup differences were assessed. Results: All patients presented with seizures at the initial consultation. Other common manifestations included cognitive dysfunction (82.2%), psychiatric disturbance (66.7%), sleep disorder (54.5%), and hyponatremia (66.7%). During the follow-up period (32.8 ± 13.5 months), six patients experienced relapse within 6-37 months. We observed that the patients who did not respond to the initial treatments and those who relapsed all had a poor long-term prognosis. The patients in the "unhealed" group were older (p = 0.009), had a lower incidence of generalized tonic-clonic seizures (p = 0.041), and had a higher probability of cerebrospinal fluid (CSF) abnormalities (p = 0.024) than those in the "complete recovery" group. Conclusion: Anti-LGI1 encephalitis was characterized by seizures, cognitive impairment, psychiatric disturbance, and sleep disorders and was often accompanied by hyponatremia. Patients who responded poorly to the initial treatments and those patients who relapsed had dismal long-term prognoses. Advanced age and CSF abnormalities may be risk factors for poor prognosis, but these still need to be verified.