Unknown

Dataset Information

0

Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.


ABSTRACT: PURPOSE:Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. METHODS:GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. RESULTS:GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (?333?min versus ?78?min) while maintaining image quality (structural similarity index ? 0.97 and root mean square error ? 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14?min. CONCLUSION:The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

SUBMITTER: Benkert T 

PROVIDER: S-EPMC5876102 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.

Benkert Thomas T   Tian Ye Y   Huang Chenchan C   DiBella Edward V R EVR   Chandarana Hersh H   Feng Li L  

Magnetic resonance in medicine 20171128 1


<h4>Purpose</h4>Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging.<h4>Methods</h4>GROG is an alternative gridding approac  ...[more]

Similar Datasets

| S-EPMC4567526 | biostudies-literature
| S-EPMC3991777 | biostudies-literature
| S-EPMC8191413 | biostudies-literature
| S-EPMC5876099 | biostudies-literature
| S-EPMC6089682 | biostudies-literature
| S-EPMC4583338 | biostudies-literature
| S-EPMC9189059 | biostudies-literature
| S-EPMC4452468 | biostudies-literature
| S-EPMC9845193 | biostudies-literature
| S-EPMC10213059 | biostudies-literature