Unknown

Dataset Information

0

UBD modifies APOL1-induced kidney disease risk.


ABSTRACT: People of recent African ancestry develop kidney disease at much higher rates than most other groups. Two specific coding variants in the Apolipoprotein-L1 gene APOL1 termed G1 and G2 are the causal drivers of much of this difference in risk, following a recessive pattern of inheritance. However, most individuals with a high-risk APOL1 genotype do not develop overt kidney disease, prompting interest in identifying those factors that interact with APOL1 We performed an admixture mapping study to identify genetic modifiers of APOL1-associated kidney disease. Individuals with two APOL1 risk alleles and focal segmental glomerulosclerosis (FSGS) have significantly increased African ancestry at the UBD (also known as FAT10) locus. UBD is a ubiquitin-like protein modifier that targets proteins for proteasomal degradation. African ancestry at the UBD locus correlates with lower levels of UBD expression. In cell-based experiments, the disease-associated APOL1 alleles (known as G1 and G2) lead to increased abundance of UBD mRNA but to decreased levels of UBD protein. UBD gene expression inversely correlates with G1 and G2 APOL1-mediated cell toxicity, as well as with levels of G1 and G2 APOL1 protein in cells. These studies support a model whereby inflammatory stimuli up-regulate both UBD and APOL1, which interact in a functionally important manner. UBD appears to mitigate APOL1-mediated toxicity by targeting it for destruction. Thus, genetically encoded differences in UBD and UBD expression appear to modify the APOL1-associated kidney phenotype.

SUBMITTER: Zhang JY 

PROVIDER: S-EPMC5879665 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>UBD</i> modifies <i>APOL1</i>-induced kidney disease risk.

Zhang Jia-Yue JY   Wang Minxian M   Tian Lei L   Genovese Giulio G   Yan Paul P   Wilson James G JG   Thadhani Ravi R   Mottl Amy K AK   Appel Gerald B GB   Bick Alexander G AG   Sampson Matthew G MG   Alper Seth L SL   Friedman David J DJ   Pollak Martin R MR  

Proceedings of the National Academy of Sciences of the United States of America 20180312 13


People of recent African ancestry develop kidney disease at much higher rates than most other groups. Two specific coding variants in the Apolipoprotein-L1 gene <i>APOL1</i> termed G1 and G2 are the causal drivers of much of this difference in risk, following a recessive pattern of inheritance. However, most individuals with a high-risk <i>APOL1</i> genotype do not develop overt kidney disease, prompting interest in identifying those factors that interact with <i>APOL1</i> We performed an admixt  ...[more]

Similar Datasets

| S-EPMC3969022 | biostudies-literature
| S-EPMC6611925 | biostudies-literature
| S-EPMC4591109 | biostudies-literature
| S-EPMC3231786 | biostudies-literature
| S-EPMC4448293 | biostudies-literature
| S-EPMC6397558 | biostudies-literature
| S-EPMC5118487 | biostudies-literature
| S-EPMC5408699 | biostudies-literature
| S-EPMC5603285 | biostudies-literature
| S-EPMC3269183 | biostudies-literature