Unknown

Dataset Information

0

Compromised Grid-Cell-like Representations in Old Age as a Key Mechanism to Explain Age-Related Navigational Deficits.


ABSTRACT: A progressive loss of navigational abilities in old age has been observed in numerous studies, but we have only limited understanding of the neural mechanisms underlying this decline [1]. A central component of the brain's navigation circuit are grid cells in entorhinal cortex [2], largely thought to support intrinsic self-motion-related computations, such as path integration (i.e., keeping track of one's position by integrating self-motion cues) [3-6]. Given that entorhinal cortex is particularly vulnerable to neurodegenerative processes during aging and Alzheimer's disease [7-14], deficits in grid cell function could be a key mechanism to explain age-related navigational decline. To test this hypothesis, we conducted two experiments in healthy young and older adults. First, in an fMRI experiment, we found significantly reduced grid-cell-like representations in entorhinal cortex of older adults. Second, in a behavioral path integration experiment, older adults showed deficits in computations of self-position during path integration based on body-based or visual self-motion cues. Most strikingly, we found that these path integration deficits in older adults could be explained by their individual magnitudes of grid-cell-like representations, as reduced grid-cell-like representations were associated with larger path integration errors. Together, these results show that grid-cell-like representations in entorhinal cortex are compromised in healthy aging. Furthermore, the association between grid-cell-like representations and path integration performance in old age supports the notion that grid cells underlie path integration processes. We therefore conclude that impaired grid cell function may play a key role in age-related decline of specific higher-order cognitive functions, such as spatial navigation.

SUBMITTER: Stangl M 

PROVIDER: S-EPMC5887108 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Compromised Grid-Cell-like Representations in Old Age as a Key Mechanism to Explain Age-Related Navigational Deficits.

Stangl Matthias M   Achtzehn Johannes J   Huber Karin K   Dietrich Caroline C   Tempelmann Claus C   Wolbers Thomas T  

Current biology : CB 20180315 7


A progressive loss of navigational abilities in old age has been observed in numerous studies, but we have only limited understanding of the neural mechanisms underlying this decline [1]. A central component of the brain's navigation circuit are grid cells in entorhinal cortex [2], largely thought to support intrinsic self-motion-related computations, such as path integration (i.e., keeping track of one's position by integrating self-motion cues) [3-6]. Given that entorhinal cortex is particular  ...[more]

Similar Datasets

| S-EPMC2978698 | biostudies-literature
| S-EPMC5005038 | biostudies-literature
| S-EPMC6040884 | biostudies-literature
| S-EPMC6339930 | biostudies-literature
| S-EPMC7123550 | biostudies-literature
| S-EPMC10200308 | biostudies-literature
| S-EPMC8150475 | biostudies-literature
| S-EPMC8550230 | biostudies-literature
| S-EPMC5593512 | biostudies-literature
| S-EPMC7497729 | biostudies-literature