Unknown

Dataset Information

0

Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes.


ABSTRACT: The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way.

SUBMITTER: Lin X 

PROVIDER: S-EPMC5892130 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes.

Lin Xiaodong X   Liu Yaqing Y   Deng Jiankang J   Lyu Yanlong Y   Qian Pengcheng P   Li Yunfei Y   Wang Shuo S  

Chemical science 20180108 7


The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integr  ...[more]

Similar Datasets

| S-EPMC5962014 | biostudies-literature
| S-EPMC7700249 | biostudies-literature
| S-EPMC7607436 | biostudies-literature
| S-EPMC6382908 | biostudies-literature
| S-EPMC9390992 | biostudies-literature
| S-EPMC7016178 | biostudies-literature
| S-EPMC2750850 | biostudies-literature
| S-EPMC7283233 | biostudies-literature
| S-EPMC5630582 | biostudies-literature
| S-EPMC3144585 | biostudies-literature